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Abstract. We study Bak, Tang and Wiesenfeld’s Abelian sandpile model of self- 
organised criticality on the Bethe lattice. Exact expressions for various distribution 
functions including the height distribution at  a site and the joint distribution of 
heights at two sites separated by an arbitrary distance are obtained. We also deter- 
mine the probability distribution of the number of distinct sites that topple at least 
once, the number of topplings at  the origin and the total number of topplings in 
an avalanche. The probability that an avalanche consists of more than n topplings 
varies as n-lI2 for large n. The probability that its duration exceeds T decreases as 
1/T for large T .  These exponents are the same as for the critical percolation clusters 
in mean-field theory. 

1. Introduction 

In recent years, the concept of self-organised criticality (SOC) proposed by Bak, Tang 
and Wiesenfeld (BTW) [l, 21 has generated much interest. There is no generally agreed 
definition of Soc. We shall adopt the view (see Takayasu e t  a1 [3]) that the existence of 
scale-independent fluctuations without fine tuning of coupling constants is the defining 
characteristic of SOC. Power-law correlations are encountered very frequently in nature. 
In some cases, soc is only a new name for, and perhaps a new way of looking a t ,  a 
familiar and fairly well understood phenomenon. An example is the low-temperature 
phase of the n-vector model for n 2 2 in d > 2. In this case, it is well known that,  in the 
absence of an external field, transverse fluctuations of magnetisation have power-law 
correlations in the entire low-temperature phase in equilibrium [4]. It seems reasonable 
that for most local dynamical evolution rules (stochastic or deterministic), these would 
also imply a power-law decay of time-dependent correlations. The criticality in this 
case is related to the existence of slowly decaying long wavelength (Goldstone) modes 
in the problem. The importance of the role of Goldsone modes in SOC has been noted 
earlier [5,6]. 

There are power-law tails in the velocity autocorrelation function in fluids (and in 
solids) also. Thus, from our point of view, all fluids show soc behaviour, as shown by 
the existence of hydrodynamic modes (phonons for solids) in the system. In turbulence 
also, criticality is due to the existence of hydrodynamical modes, but in this case, the 
critical exponents take non-trivial values due to the strong coupling between different 
modes [7]. 

A somewhat similar example of SOC is the steady state of an ecological system 
having N species and with a population dynamics of the Lotka-Volterra type [8]. Let 
Ci(r,t) be the density of the population of species i at point T at time t .  We assume 
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that the rates of change of the Ci are quadratic in the local densities, with additional 
terms to account for diffusion in space and for stochasticity in birth rates. In the 
absence of noise, such equations are known to possess spatially uniform solutions 
oscillatory in time in some parameter regimes. Even with diffusion and stochasticity, 
clearly long-wavelength perturbations of the phases of oscillations will decay very 
slowly in time and will lead to slower than exponential decay of correlations in space 
and time. The forest-fire model proposed by Bak e2 a1 [9] is qualitatively similar. In 
this model, the burning trees and the unburnt trees are the two interacting ecological 
species (predator and prey). 

Another class of problems where soc in this general sense is encountered is in 
models of irreversible growth. Kadanoff [5] has pointed out that diffusion-limited 
aggregates may be called self-organised critical as they have non-trivial power-law 
exponents independent of the precise value of, say, the sticking probability. Note 
that diffusion-limited aggregation may also be thought of as a special case of reaction 
diffusion systems discussed in the previous paragraph. In a similar sense, one could 
argue that other irreversible aggregation models, e.g. models of gelation [lo], the Eden 
model [ll] (for non-trivial surface properties), invasion percolation [12], show SOC. 

In fact, a large linear (or branched) polymer molecule in a solvent is also an example 
of SOC, as the positions of monomers show non-trivial power-law correlation. This 
example is interesting in that it is a system in thermal equilibrium, and it is at  a critical 
point in the conventional thermodynamic sense. (In the equivalence of this problem 
to the n = 0 vector model, the distance from the critical temperature varies as 1 /N,  
where N is the number of monomers in the chain.) In a similar way, a system which 
undergoes a thermodynamical first-order phase transition is self-organised critical in 
the coexistence region. (One can add, say, 1 gm of ice to a comparable mass of water 
at  roughly room temperature. On stirring these two, the resulting combined system is 
at  the phase coexistence line for a range of values of input parameters.) On the phase 
coexistence line, it is well known that there are non-exponential tails in correlation 
functions, as shown by the phenomenon of hysteresis and the existence of power-laws 
in the late-stage growth of phase separation [13]. 

Given the wide range of systems which show SOC, it is not surprising that several 
different models of it have been proposed and studied in the last two years [9,14,15]. 
Of the several models that have been studied, the sandpile automaton model has 
attracted maximum attention [16-231 because of its intuitive appeal and the simplicity 
of its mathematical structure [24]. In the case when there is a preferred direction, an 
exact solution has been obtained and the corresponding exponents are known in all 
dimensions [25]. The undirected problem also appears to be exactly solvable, as shown 
by the simple expressions for entropy of the self-organised critical state and the two- 
point correlation function obtained earlier [24], but it has so far not been possible 
to compute quantities such as the distribution function of sizes of avalanches in any 
dimension other than the trivial d = 1 case. 

In this paper, we study the BTW sandpile model on the Bethe lattice. We assume 
that the toppling conditions depend on the local height of the sandpile, but not on its 
gradient. This model has been termed the Abelian model [24] as the operators repre- 
senting the addition of particles at  different sites satisfy a commutative algebra. This 
Abelian property of the operator algebra is absent in other BTW-type models where the 
toppling criteria depend on the local gradients of height [21,26]. We are able to obtain 
a fairly detailed characterisation of the SOC state of the Abelian model on the Bethe 
lattice. We give explicit expressions for the single-site height distribution function, 
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the joint distribution function of heights at  two sites separated by arbitrary distance 
R and the distribution of the number of distinct sites toppled in an avalanche. The 
asymptotic form of the distribution of avalanche durations is also determined. We find 
these distributions are characterised by the mean-field value of exponents describing 
cluster distributions in percolation theory at  the critical percolation threshold. 

The plan of the paper is as follows. In section 2, we define the model precisely. In 
section 3,  we introduce the recursion relations to enumerate the stable configurations 
that are allowed in the SOC state. The enumeration of allowed configurations subject 
to  different constraints allows us to determine various n-point correlation functions in 
the SoC state. In section 4 we compute exp!icitly the single-site height distribution 
function. The joint distribution of heights at two sites separated by arbitrary distance 
is calculated in section 5 .  In section 6, the distribution functions of the mass and 
duration of avalanches are discussed and the critical exponents determined. Section 7 
deals with the distribution functions of the number of topplings at  a site and the 
total number of topplings in an avalanche. In section 8, we generalise our results to 
Bethe lattices with other coordination numbers. Section 9 contains some concluding 
remarks. 

2. Preliminaries 

We consider a Cayley tree of N sites such that all sites of the tree have coordination 
number 3,  except the boundary sites which have a coordination number 1. 

The BTW model on this lattice is an automat,on model defined as follows: at each 
site i (1 5 i 5 N )  we associate an integer zi (1 5 zi 5 3). In sandpile terminology, zi 
is the height of a sand column at site i. The dynamics of the model is defined by two 
rules. 

(i) Adding a particle: if the system is in a stable configuration, we choose at  
random a site i (all sites equally likely), and increase the height at that site by 1. 
Heights at  other sites remain unchanged. 

(ii) Toppling rule: if at  any site the height of the sand column exceeds 3 then 
that site topples, its height decreases by 3 and the sand particles drop on the nearest 
neighbours. As a result, the height at each of the nearest neighbours increases by 
1. Note that each toppling at  sites on the surface decreases the number of particles 
in the system by 2,  but toppling at non-surface sites conserves the number of (sand) 
particles. 

Adding a particle at  a randomly chosen site may cause it to topple, and the 
toppling may induce toppling at some of the neighbouring sites at  the next time 
step, thus causing an avalanche .  Eventually the system reaches a stable configuration 
(no more topplings). If we keep on adding particles randomly, the system ultimately 
reaches a statistically stationary state which is crit ical in the sense that the probability 
distribution of the size of an avalanche by mass or by duration shows a power-law 
behaviour for a very wide range of sizes (the upper cut-off on the size is determined 
by the number of sites of the lattice, and is strictly infinite in the thermodynamic 
limit). 

A well recognised problem with the Cayley tree is that most of its sites are very 
near to the surface. Hence, calculation of the thermodynamic limit of the ‘bulk’ 
properties from the finite N calculation requires special care. Consider a site at a 
distance T from the surface. If we add a particle at this site, the expected duration 
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of the resulting avalanche in the SOC state tends to  infinity only when r + 00. Thus 
in order to  study the SOC state, we shall only consider the distribution of avalanches 
caused by adding a particle at a site very far from the surface. This is the procedure 
we shall use t o  define the problem on the Bethe lattice [27]. Note that  the particles 
are added a t  random near the surface also (else the existence of a unique soc state 
is not guaranteed). But in calculating the distribution of avalanche sizes, avalanches 
caused by additions near the surface are not included. 

In a stable configuration, a t  any site i the height of the sand column zi can take 
three possible values 1, 2 or 3.  As the lattice has N sites, the total number of stable 
configurations is 3 N .  But not all of them are allowed in the SOC state. For example, 
if in a configuration, there are two adjacent sites (say a and b )  both having heights 1 
(figure l ( a ) ) ,  then that configuration occurs with zero probability in the SOC state. 
This is easy to  see. Suppose we start  with any arbitrary initial configuration with 
z, # 1 and f b  # 1 and add particles randomly a t  different sites. In order to  reach 
a configuration with z ,  = 1 and zb = 1, at  least one toppling must have occurred at  
both the sites. Say b topples last. But any toppling a t  b increases z, by 1. Then just 
before b’s last toppling, z, must be 0,  but this is not allowed in the model. Therefore, 
we will never reach a configuration with 2, = 1 and zb = 1. Thus, any configuration 
with unit heights a t  adjacent sites is forbidden in the soc state. 

Figure 1. Two examples of configurations that cannot occur in the soc state. 
Numbers inside the circles are the values of heights at the sites. Symbols just outside 
the sites are the site labels. 

Similarly, one can show that any configuration containing a site with height 2 

In general, any set F of T sites ( T  3 1) whose heights z j  ( V j  E F )  satisfy 
having two neighbours of height 1 is also forbidden in the SOC state (figure l ( b ) ) .  

zj 5 coordination number of j in F 

is not allowed in the soc state. We call such a configuration of heights on a finite 
connected set of sites a forbidden subconfiguration (FSC) [24]. 

The allowed configurations on a subtree of the Cayley tree can be divided into two 
classes: weak and strong. These are defined as follows. Let T be a rooted subtree of 
the lattice with root vertex a. Let T be connected to  the rest of the lattice via the 
site b (figure 2 ( a ) ) .  Consider an allowed subconfiguration C on T (i.e. C does not 
contain any FSC in it). For any height f b  a t  b,  this defines a subconfiguration C’ on 
the tree T’ (= T U  b ) .  If C’ does not contain any FSCs in it even when zb = 1, then C 
is called a strongly allowed subconfiguration on T .  On the other hand, if C’ becomes 
forbidden on T‘ if %b = 1 (though C is allowed on T ) ,  then C is called a weakly allowed 
subconfiguration on T .  

As an example, consider an allowed subconfiguration C on a subtree T of three 
sites shown in figure 2 ( b )  with z, = 1. In this case, if zb = 1, then in T’ (= T U b ) ,  
we get an FSC. Hence, C is weakly allowed on T ,  whereas the subconfiguration z, = 2 
with other heights unchanged (figure 2( c)) is strongly allowed on T . 

V j  E F 
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Figure 2. (a) A subtree T with root vertex a. The rest of the tree is denoted by 
the hatched area. The site b is the nearest neighbour of a ,  but not part of T. ( b )  
An example of a weakly allowed subconfiguration on the tree T (consisting of three 
sites only) with vertex a having unit height (i.e. za = 1). ( c )  The same graph as ( b )  
becomes strongly allowed if za = 2. 

3. Recursion relations 

Let, T‘ and T“ be two rooted subtrees of the lattice with root vertices a’ and d‘ 
connected by a single bond (figure 3) .  Let, C‘ and C” be two allowed subconfigurations 
on T’ and T” respectively. Then the configuration C (= C’ U C”) on T (= T’ U T”) 
might be allowed or forbidden depending upon C‘ and C”. It is easy to  verify that  C 
will be forbidden on T iff both C’ and C” are weakly allowed subconfigurations. 

Figure 3. Two adjacent sites a’ and a” are the vertices of two rooted subtrees T’ 
and T” respectively. A configuration on the tree T (= T’ U T”) will be forbidden in 
the soc state if the corresponding subconfigurations on 2” and T” are both weak. 

Let T be a subtree of the lattice with root vertex a. Let the nearest neighbours 
of a in T be a l  and U,. Then on deleting the vertex a, T breaks up into two subtrees 
TI and T, with roots a l  and U, respectively. Let Nw(T,i) be the number of distinct 
weakly allowed subconfigurations on T given that  the height variable a t  the root a 
has the value i (1 5 i 5 3) .  Similarly we define N,(T,i) t o  be the number of distinct 
strongly allowed subconfigurations on T with height variable i at the root a. Also, let 

and 

i=1  

For each subconfiguration that  contributes to  N,(T, l ) ,  there is a unique strongly 
allowed subconfiguration on Tl and a unique strongly allowed subconfiguration on T, 
(obtained by deleting the root vertex U )  and vice versa. This shows that 

(3 .3)  
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Defining 

we find tha t  i t  satisfies the following recursion relation: 

(3.11) 

(3.12) 

This equation allows us to  determine X ( T )  recursively for any subtree T .  

n=O 
Figure 4. The recursive definition of nth generation binary trees for n = 0, 1 ,  2 .  

Let Bn be a binary tree of generation n. These are illustrated recursively in 
figure 4. The  graph Bo consists of a single vertex. Clearly 

and hence 

X ( B o )  = !j. 

Equation (3.12) then simplifies t o  

(3.13) 

(3.14) 

(3.15) 

(3.16) 
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with the initial condition given by (3.15).  This has the simple solution 

X(B,) = 1 - 2++'). (3.17) 

As n -+ CO, X(B , )  tends to 1 geometrically fast. It is easy to see that the argument 
can be extended to more general trees T and in the limit when the distance of the 
root to the nearest surface site tends to infinity, we would get X ( T )  = 1.  Then from 
(3.3)-(3.8) we see that 

N,(T, 1)  : Nw(T ,  2) : Nw(T ,  3) : N,(T, 1) : N,(T, 2) : N,(T, 3) = 1 : 2 : 1 : 0 : 1 : 3. 
(3.18) 

For finite trees, the root site is at a finite distance from the surface. In that case, there 
are (exponentially small with distance) corrections to  this result. In the following, we 
shall ignore all such surface corrections. 

4. Single-site height distribution function 

We now calculate, in the SOC state, the probability distribution of heights at a ran- 
domly chosen site 0 deep inside the lattice, This distribution has been obtained 
independently in [20] without, however, any explanation. Let P ( i )  be the probability 
that the height at  site 0 is i (1 5 i 5 3).  Let the three subtrees connected to 0 
be Tl ,  T2 and T3 respectively (figure 5). We shall write X ( q )  = xj for simplicity of 
notation. 

Figure 5.  Figure showing the central site 0 connected to  three subtrees T I ,  7'2 
and T3. Depending on the height i (1  5 i 5 3) at 0, only some of the allowed 
subconfigurations on Ti give an allowed configuration on the full lattice. 

Suppose i = 1. Then, for a configuration to be allowed in the soc state, each of 
the subconfigurations on Ti (i = 1 ,2 ,3 )  should be strongly allowed. Thus, the number 
N(1) of allowed configurations in SOC with i = 1 at 0 is given by 

3 

(4.1) 
i = l  

If i = 2, at most one of the subtrees Tl, T2,  T3, can be of the weakly allowed type. 
Therefore, the number of allowed configurations N(2)  with i = 2 at 0, in SOC, is 

3 , 3  
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A similar argument shows that 

Hence the total number of allowed configurations in the SOC state is given by 

3 

Ntotal = 
i = l  

The probability P( i )  of having height i a t  site 0 is then given by, for i = 1 , 2 , 3 ,  

(4.4) 

When the site 0 is sufficiently far from the surface of the lattice we have zj = 1 for 
all j. Then (4.4) reduces to 

Hence, from (4.5), we get 

P(1) = & P ( 2 )  = 5 P(3)  = 

The average height a t  any site in the soc state is given by 

3 

(i) = C i P ( i )  = $. 
i=1 

5. The pair distribution function in the soc state 

Consider two nearest-neighbour sites A and B deep inside the lattice (figure 6).  Let 
P ( i ,  j )  be the probability that the height variables a t  sites A and B are i and j 
respectively in the SOC state. Let the four subtrees that constitute the rest of the 
lattice be T,, T,, T3 and T,. Clearly, there are no configurations with i = 1 and 
j = 1 in the SoC state as this is a forbidden subconfiguration. Thus, we start  with 
configurations for which i = 1 and j = 2. For these configurations t o  be allowed in 
the SOC state, all the subconfigurations on the four subtrees T,, T,) T3 and T4 have 
to be strongly allowed. The number of such configurations N I , ,  is clea,rly given by 

In a similar way, we can determine the number of allowed configurations for any other 
value of i and j. For example, in figure 7 are shown all distinct types of configurations 
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Figure 6. Figure showing adjacent sites A and E connected to four subtrees T I ,  T2, 
T3 and T4. The fact that A and E have heights i and j restrict the subconfigurations 
to be allowed on T,. 

S wHs sHs sws sHw 

S s s  s w  s s  w s  S 

Figure 7. The five distinct types of subconfigurations allowed on the both have 
heights 2. 

that  are allowed in SoC state with i = 2 and j = 2. Thus the number of allowed 
configurations of the full lattice with i = 2 and j = 2, is given by 

4 \ 4  4 

The last step again uses the fact that  all x j  = 1 for sites deep inside the lattice. 
For other values of i and j ,  i t  is easy to  write down similar expressions. The prob- 

abilities P( i ,  j )  are proportional to these numbers and the proportionality constant is 
determined by ensuring that the sum of all probabilities is unity. The product of the 
Ns(Ti )  cancels with the same term in the normalisation constant. Thus, when both 
A and B are sufficiently far from the surface of the lattice, we get 

P ( 1 , l )  = 0 

P(2,2)  = & 
P(3 ,3 )  = g 

P(1 ,2 )  = P ( 2 , l )  = & 
P(1 ,3 )  = P ( 3 , l )  = 3 3 

P (2 ,3 )  = P(3 ,2 )  = 

This gives 

(5.3) 

(5.4) 

which is a bit less than the value ( i)(j)  = y1 indicating that the height variables in 
the SOC state are weakly anticorrelated. 

In exactly the same way we can calculate the two-point correlation function of 
two sites A ,  and A,+1 separated by distance n (figure 8). The path from A, to  
A,+, goes through the points labelled A,,  A,, . . . ,A,. These sites ( A l l .  , .  , A,,,) 
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are connected to  the rest of the lattice by ( n  + 3) subtrees U,, . . . , U,,,. Then, 
for a given subconfiguration of heights a t  ( A , , .  . . , A , , , ) ,  the total number of allowed 
configurations in the SOC state of the full lattice can be calculated in terms of N,(U,), 
where CY = w, s and k = 1,2,. . . , n + 3. To determine the correlation function Pn(il j ) ,  
i.e. the probability that  the height at A ,  is i and at  A,,, is j ,  one has to ,  in addition, 
sum over different possibilities of heights a t  the intermediate sites A ,  with k = 2 , .  . . , n. 
A brute force calculation becomes rather tedious even for n = 2. Luckily, it simplifies 
considerably in terms of a transfer matrix. 

Figure 8 .  Two sites A1 and A,+1 of the lattice a t  a distance n. The path from A1 
to A n t i  goes through the points Az ,  A3 , .  . . , A , .  The rest of the lattice breaks up 
into subtrees 9 ,  U2, . . . , Un+3. The arrows indicate the direction of transfer for the 
transfer matrix. 

Figure 9. The recursive definition of subtrees Tk. The tree Tk+l consists of the 
root Ak+l and the subtrees Tk and u k + 2  connected to Ak+l .  

We define the subtree Tk (k = 1 , 2 , .  . . , n )  as the tree rooted a t  A ,  which gets 
disconnected from A,+, when the link connecting A ,  to  A,,, is removed. We consider 
the number of allowed configurations of Tk when the height variable a t  A ,  is held fixed 
a t  the value i. Then the tree Tk,, consists of the root A,+, and the subtrees T, and 
U,+, (figure 9). Using (3.9) and (3.10), we get, for k = 1 , 2 , .  . . , n - 1, 

where the bars above N w ( T k )  and N s ( T k )  denote the constraint that  the height a t  A ,  
is fixed at i. Using xk = 1 for all k when the sites are far away from the surface of 
the lattice and 

we get 
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The total number of configurations, whose height a t  Antl and a t  A, are fixed at  i 
and j respectively, can be determined as in section 4 with TI, T2 and T, replaced by 
T,, U,,, and U,,,. For example, if j = 1, the total number of allowed configurations 
with j = 1 and height i at  A , ,  is given by, from (4.1), 

with N,(T,) given by (5.7).  We have to  divide this number by the total number of 
allowed configurations of the full lattice in the soc state, i.e. Ntotal as given by (4.6) 
with T,, T2 and T, replaced by T,, U,,, and U,,,. Thus 

where N,(T,) is obtained from (5.7) by replacing Nw(Tl,i) and Ns(T1,i) by Nw(Tl) 
and Ns(T,)  respectively. This gives 

(5.10) 
k = l  

The eigenvalues of the (2 x 2) matrix in (5.7) are 4 and 1. Then, with a little algebra, 
we find that 

(5.11) 

where P( i )  (1 5 i 5 3) are the single-site distribution functions calculated in section 4 
and the fi,j are numerical constants given by 

fl,l = f l , 2  = f 2 , 1  = f 2 , 2  = -&j 

f --1. 

1 
f1,3 = f2,3 = f3,2 = f3,1 = 5 

3,3 - 9 '  

(5.12) 

We see that correlations decay with distance as 4-,. Since the number of sites a t  
distance n grows only as 2,, we see that even the integral of these correlations is finite. 
This shows that correlation of height in the SOC state is effectively short-ranged on 
the Bethe lattice. 

This is reminiscent of the conventional Bernoulli percolation problem, where the 
occupancy at  different sites is uncorrelated. However, correlation functions depend- 
ing on connectivity have a non-trivial dependence on distance. In our problem, the 
connectivity rule is given by the avalanche dynamics (whether a disturbance at  site 
i causes toppling at  site j ) .  The  analogv to the percolation problem has been noted 
earlier [1,20]. However, Obukhov has argued [28] that  the upper critical dimension 
for BTW-like models of SOC is 4,  and not 6 as in conventional uncorrelated percola- 
tion. On the Bethe lattice, we can show a precise correspondence between SoC and 
percolation problems. This we proceed to  do in the next section. 
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6. The avalanche mass distribution function 

If a particle is added at  a particular site 0 of the lattice, the site will topple iff its 
height is 3. As a result of this toppling at 0, each of its three nearest neighbours will 
get one particle each. If any of these neighbours had height 3 already, it would topple 
in turn and the avalanche would continue. We shall define the mass of an avalanche 
as the number of distinct sites at which toppling occurs in the avalanche. It is easy to 
see that on the Bethe lattice, the cluster of toppled sites in an avalanche is the same 
as the connected set of all sites having height 3 including the site where a new particle 
has been added. Thus, the mass of the avalanche is equal to the number of sites in 
the corresponding connected cluster. For the Bethe lattice, it is thus easy to  calculate 
the probability g(n) that an avalanche has mass exactly equal to n when a particle is 
added at 0. 

! I 

Figure 10. A connected cluster of sites with height 3 and size n = 6. The rest of 
the lattice breaks up into subtrees Ui, U2,. . . ,Us. 

Consider a specific cluster C (including 0) of mass n, each site of the cluster 
having height 3. The probability U c ( n )  of its occurrence in the SOC state can be 
computed as follows. The n sites of the cluster are connected to the rest of the lattice 
by ( n  + 2) subtrees labelled U,, U,, . . , , U,,, (figure 10). For a configuration of the 
full lattice containing C, to be allowed in the SoC state, there are two restrictions on 
the subconfigurations on the Vi: 

(i) the subconfigurations on the Vi ( i  = 1, .  . . , n+ 2) cannot be all weakly allowed; 
(ii) the root of any of the Vi cannot have height 3. 
The number of allowed configurations N ( C ) ,  containing C and satisfying the above 

two restrictions is given by 

Using equation (3.18), we get, when the cluster is far away from the surface of the 
lattice, 

To compute Uc(n), we have to divide N ( C )  by Ntota,, the total number of allowed 
configurations of the full lattice in the SOC state. Using arguments similar to that 
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used in deriving (5.10), we get (with n replaced by (n + 1)) 

Hence 

U,(n) = - N ( C )  - - f [1 - ( 3 , + 2 ]  4 4 ,  
Ntotal 

Thus, U,(n) depends on the size n of the cluster and not on its shape or perimeter. 
Hence we can drop the subscript c in U,(n). Clearly then 

g(n) = U(n)an (6.5) 

where an is the number of distinct n-sized animals each including the site 0. The com- 
putation of a, is well known for the Bethe lattice [29], but for the sake of completeness 
we repeat it here. We define the generating function G ( x )  of a, as follows 

oc, 

G ( x )  = a,z". 
n = l  

The site 0 is connected to the rest of the lattice by subtrees TI, T2 and T3 (figure 5). 
Let B ( z )  denote the number of lattice animals on any one of the subtrees 

n = l  

where bn is the number of n-sized clusters on the subtree Ti 
Then, B ( x )  and G(z) satisfy the simple equations 

B ( z )  = z [ 1 +  B(z) I2  

and 

G ( z )  = z [1+  B(x) I3  

solving (6.8) for B ( z ) ,  we get 

1 - 22 - di=x B ( x )  = 
2x 

and 

Expanding equation (6.11) in powers of 2 ,  we get 

J 2n+1 
C n - 1 ,  a, = - 

2 n +  1 

(6.10) 

(6.11) 

(6.12) 
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Substituting (6.4) and (6.12) in (6.5), we get 

(6.13) 

For large n, this gives 

g(n) - n - 3 / 2 .  (6.14) 

Thus the avalanche mass has an asymptotic power-law distribution for large mass 
which is a typical signature of the SOC. The exponent is the same as that which 
characterises the cluster-size distribution in an ordinary (uncorrelated) percolation 
problem in high dimensions. Thus, at least on the Bethe lattice, small anticorrelations 
in height variables have no significant effect. They shift the critical value of the 
concentration of 3’s from its uncorrelated percolation value f to a somewhat higher 
value &, but do not result in a change of the critical exponents. 

From (6.14), the probability that the avalanche mass exceeds n varies as n - l l 2  for 
large n. Since in our problem, all avalanches of n sites (irrespective of their shapes) 
have equal probability of occurrence, the average space extent of an avalanche of size 
n is exactly same as that of a random animal of n sites. On the Bethe lattice, it is 
well known [30,31] that the typical extent of an animal of size n (as measured by the 
distance of the farthest point of the animal measured along the bonds of the lattice) 
varies as n1I2 for large n. This implies that the probability that an avalanche created 
by adding a particle at a random site will travel a distance r 2 R along bonds is given 
by, for large R, 

1 
(6.15) - R’ Prob(r > R)  

If we define the Euclidean distance between two sites separated by R steps along the 
bonds of the lattice as RE = a, then the probability that an avalanche extends at  
least up to Euclidean distance RE varies as RE2 for large RE. 

We note that the largest distance along bonds is related to the duration of an 
avalanche, To be specific, it is easy to show that the duration T of an ava,lanche 
satisfies the inequality R < T 5 2R, where R is the maximal distance along bonds 
travelled by the avalanche. This implies, from (6.15) that,  for large T ,  

1 
Prob(duration > T )  N -. 

T (6.16) 

7. Distribution of toppling numbers 

If a particle is added at  a particular site 0 on the lattice, the sitLe might topple more 
than once depending upon the height configuration of its neighbours. Note that the 
site 0 would topple at least n times iff all the sites up to distance (n- 1) all have height 
3 at the time the particle is added. Let N ,  be the number of allowed configurations 
of the full lattice such that adding a particle at 0 causes n or more topplings at  0. 
In each such cluster, all the heights up to a distance ( n  - 1) are all 3,  and these are 
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connected to  the rest of the lattice by 3(2"-') subtrees T,,T,,. . . ,T3(2n-1). The only 
restriction is that these subtrees should not all have weakly allowed configurations. 
This gives 

and using z(Ti) = 1 we get 

i= l  

The total number of allowed configurations in the SOC state can also be expressed in 
terms of the Ns(T , )  by the same argument as used in deriving (5.10) 

i= l  

Hence f(n), the probability that the origin 0 topples at  least n times, is given by 

We see that f(1) = 5, f (2)  = &, etc. For large n,  f(n) decays to 0 extremely 
rapidly with n (as an exponential of an exponential). This indicates that multiple 
topplings at  a particular site on the Bethe lattice is a rare event in the SOC state. 

Since a site might topple more than once before the system comes to  a stable 
configuration, the number of distinct toppled sites in an avalanche is not the same as 
the number of topplings in the avalanche. Below we calculate the toppling number 
distribution function F ( s ) ,  i.e. the probability that there will be in total exactly s 
topplings in the system. 

We consider an avalanche cluster of n distinct toppled sites, for which the origin 
topples exactly r times. Then it follows that its three nearest neighbours will each 
topple exactly ( r  - 1) times, the six next-nearest neighbours will each topple exactly 
( T  - 2) times, etc. All the sites at  distance ( r  - 2) will topple exactly twice, and all the 
sites with distance greater than ( r  - 2) will topple exactly once. Adding, this gives us 
the total number of topplings s in the avalanche as 

s = n + 3(2'-') - 2r - 1. (7.5) 

Let An,r be the number of distinct clusters of n sites such that the origin topples 1 T 

times. We define the generating function 

M 

n = l  

Then it is easy to  see that for r 2 1 
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with B(x) given by (6.10). 
Now the number of clusters having n distinct sites where the origin topples exactly 

r times is (An,r - An,rtl). From (6.4), the probability of occurrence of any one of 
these in the SOC state is (1 - (i)"t2)4-"/3. Let P, be the probability that there are 
exactly s topplings in the avalanche. Then using (7.5) we get 

It seems difficult to  get a closed-form formula for P,. However, the series is rapidly 
convergent in r for fixed x < 1 and each of the functions A , ( z )  has a singularity of 
the type (1 - ~ ) l / ~ .  It thus follows that 

p, N s-312 (7.9) 

for large s. This result might have been expected a priori, as multiple topplings are 
rare and so s is roughly same as the number of distinct sites toppled. 

8. Generalisation to ( q  + 1) coordinated Bethe lattices 

So far we have been discussing the height model of soc on a ( q  + 1) coordinated Bethe 
lattice with q = 2. The model can be generalised to a (q+  1)  coordinated Bethe lattice 
with q 2 2. The critical height at  any site, in the general case, is ( q  + 1) and if the 
height exceeds (q+l) a toppling occurs at that site. The treatment is a straightforward 
generalisation of the q = 2 case, but the algebra becomes more tedious. We mention 
a few of the results. 

Equation (3.17) for the ratio of the number of weak and strong configurations, 
generalises to  

1 
X(B , )  = - (1 -  q-("+')) .  (8.1) q - 1  

As n + CO, X(B,) tends to l/(q - 1) .  
The single-site height distribution function P ( i )  (1 5 i 5 q + 1)  is given by 

i-1 

(q2  - 1)qq m=O 
(8.2) P( i )  = q+lcm(q - 1 ) q - m t l .  

For q = 2 , 3 , 4  these results have been obtained independently by Grassberger and 
Manna [20]. 

The avalanche mass distribution function g(n) can be calculated similarly. The 
expression for U ( n ) ,  as defined in (6.5),  is given by 

(q - 1)"(9-1)+2 - (1 - q-P)"(n-1)t2 

( q 2  - 1)q"q U ( n )  = (8.3) 
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The number of distinct n-sized animals a,, each including the origin, was originally 
calculated by Fisher and Essam [29] for a ( q  + 1) coordinated Bethe lattice and is 
given by 

Combining (8.3) and (8.4) in (6.5), we get for large n 

Thus the exponent of the power-law distribution of avalanche mass is still 5 and is 
independent of q. 

9. Discussion 

In this paper we have determined the critical exponents of the Abelian sandpile model 
of SOC on the Bethe lattice, and have shown that they agree with the mean-field 
critical exponents of percolation. These results would also be expected to hold for the 
more conventional d-dimensional spaces Z d  , when the dimension d exceeds the upper 
critical dimension d, for this problem. The value of d, in this case is not quite settled. 
As mentioned earlier, it has been argued [28] that d, = 4, as this problem resembles 
a branching self-avoiding walk problem. The relationship to the percolation problem 
would suggest that d, = 6. However, this problem actually corresponds to a correlated 
percolation problem with very specific correlations and the value of d, could be lower. 

We note that the fractal dimension of avalanche clusters is 4 on the Bethe lattice 
[32]. Assuming that this is true for all hypercubical lattices with dimension d 2 d, as 
well, we obtain 

d, 1 4  

as the fractal dimension of avalanche clusters must be lower than that of the embedding 
space. An interesting possibility is that for d 1 4 ,  the avalanche clusters have fractal 
dimension 4, but for d 5 4 ,  they are compact. We note that the exponent value 
T = 4 on the Bethe lattice agrees with Zhang’s values for d = 4 [16], derived using the 
assumption that the clusters are compact. We note, however, that for d = 2, Zhang’s 
argument gives 7 = 1, a value which disagrees significantly with the value 7 = 1.22 
obtained in recent numerical simulations [20]. 

It seems rather unlikely that a simple general theory of SOC will be able to describe 
all the different kinds of models discussed in the introduction. One can only hope that 
study of some of these models will help us understand their criticality more clearly. 
With hindsight, the power-law describing, say, the distribution of avalanche masses 
in the sandpile model might appear as trivial as that of the power-law tails in the 
auto-correlation function of fluids. Until then, further study of some simple models 
seems necessary. In particular, the relationship between intermittency, chaos and soc 
is quite intriguing and deserves further study. 
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