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Residence time distribution for a class of Gaussian Markov processes
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We study the distribution of residence time or equivalently that of ‘‘mean magnetization’’ for a family of
Gaussian Markov processes indexed by a positive parametera. The persistence exponent for these processes
is simply given byu5a but the residence time distribution is nontrivial. The shape of this distribution
undergoes a qualitative change asu increases, indicating a sharp change in the ergodic properties of the
process. We develop two alternate methods to calculate exactly but recursively the moments of the distribution
for arbitrarya. For some special values ofa, we obtain closed form expressions of the distribution function.
@S1063-651X~99!03306-1#

PACS number~s!: 02.50.Ey, 05.40.2a
i-
o

o

le
do
n

lc
e

s
e
d

a

el
tit

-
te
te

ly

e
ia

ra
e
h

ss,

nly
nce.

is

s

s
ian
f
zero
y a

f-

i-
al

ess
as

ion

e

I. INTRODUCTION

The problem ofpersistencein spatially extended nonequ
librium systems has recently generated a lot of interest b
theoretically @1–7# and experimentally@8–10#. These sys-
tems include the Ising or Potts model undergoing phase
dering dynamics@1–4,11–16#, the simple diffusion equation
with random initial conditions@5,6#, several reaction diffu-
sion systems in both pure@17# and disordered@18# environ-
ments, fluctuating interfaces@19–21#, Lotka-Volterra models
@22#, and inelastic collapse of a randomly forced partic
@23#. In many of these systems the spatial degrees of free
of the original many body problem can be integrated out a
the problem of persistence effectively reduces to the ca
lation of the probabilityP0(t) of no zero crossing up to som
time t of an effective single site stochastic processy(t).

In most cases of interests, this probability decays a
power law for large timeP0(t);t2u where the persistenc
exponentu is nontrivial. This nontriviality can be trace
back to the fact that once the spatial degrees of freedom
integrated out, the effective single site processy(t) becomes
non-Markovian. For a non-Markovian process, it is w
known that the calculation of any history dependent quan
such as persistence~no zero crossing probability! is ex-
tremely hard@29,30#. As an example, for the diffusion equa
tion with a random initial condition, the effective single si
processy(t) is a Gaussian non-Markovian process charac
ized by its two-time correlator̂ y(t1)y(t2)&5@4t1t2 /(t1
1t2)2#d/4, whered is the spatial dimension@5#. Even for this
simple case, the corresponding persistence exponentu is
nontrivial and is known only numerically and approximate
from analytical methods@5,25#, but not exactly yet. Re-
cently, however, an exact series expansion result for the
ponent u has been derived for arbitrary smooth Gauss
processes that includes the diffusion equation@6#.

Recently it was argued@24,25# that given this stochastic
processy(t), it might be useful to investigate a more gene
quantity, namely the ‘‘residence time distribution,’’ whos
limiting behavior determines the persistence exponent. T
is the distribution f (r ,t) of the random variabler (t)
5(1/t)*0

t u@y(t8)#dt8, where u(x) is the Heaviside theta
PRE 591063-651X/99/59~6!/6413~6!/$15.00
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function. Thusr (t) is simply the fraction of time spent by
the processy(t) within time t on one side of zero. It was
shown in Ref.@25# that for any Gaussian stochastic proce
the distributionf (r ) is independent of timet. For Gaussian
processes with zero mean, the symmetryr↔(12r ) indi-
cates that the functionf (r ) is symmetric aroundr 51/2. Also
in the limit r→0 ~and symmetrically forr→1), the function
f (r ) is clearly the probability that the process remains o
on one side of zero and hence is proportional to persiste
This indicates that asr→0, the functionf (r ) must behave as
;r u21 @and as ;(12r )u21 for r→1], so that f (r )dr
;t2u asr→0 or 1. A somewhat more convenient variable
the ‘‘mean magnetization‘‘@24# m(t)52r (t)21, whose
range is @21,1# and whose distribution functionP(m)
5 1

2 f „(11m)/2… is symmetric aroundm50 and behaves a
P(m);(16m)u21 nearm561.

The distributionP(m) is known exactly for the proces
that represents the position of a one-dimensional Brown
walker @26#. Lamperti @27# derived an exact expression o
P(m) for a class of renewal processes where successive
crossing intervals are statistically independent. Recentl
special case of Lamperti’s results@27#, when the successive
intervals are distributed according to a Lev´y law, was re-
derived by Baldassariet al. @28# by a different method. The
distribution P(m) has been determined numerically for di
fusion equation@25# and for interface growth models@21#.
Besides, moments ofP(m) have been determined analyt
cally for diffusion equation under the independent interv
approximation@24#.

The distribution functionP(m) provides a more detailed
information on the statistical nature of the stochastic proc
y(t). For example, in the context of diffusion equation it w
pointed out by Newman and Toroczkai@25# that interesting
information can be extracted from the shape of the funct
P(m). For diffusion equation, the exponentu(d) @which
controls the shape of the functionP(m) nearm561] in-
creases monotonically with space dimensiond. There exists
a critical dimensiondc where u(dc)51 such that ford
,dc , u,1 and the functionP(m) diverges asm→61, has
a minimum atm50 and is concave upwards in the rang
@21,1#. On the other hand, ford.dc , u.1, the function
6413 ©1999 The American Physical Society
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P(m) goes to zero asm→61, has a maximum atm50 and
is convex upwards in@21,1#. The peak of the distribution
shifts from the edgesm561 to the centerm50 asd in-
creases throughdc . Thus ford,dc , the most probable con
figurations of the processy(t) are the ones which do no
cross zero whereas such configurations are least probab
d.dc , the existence of a sharp change in the ergodic pr
erties of the diffusion field. Such detailed information is n
contained in the persistence exponentu. In Ref. @25#, dc for
diffusion equation was approximately determined,dc'36.

This useful information contained inP(m) of the diffu-
sion equation have not yet been possible to derive exa
mainly due to the non-Markovian nature of the single s
Gaussian process. It would therefore be useful to find
study some simpler Markovian Gaussian processes
some tunable parameter~which would play the similar role
as the spatial dimensiond does in diffusion equation! where
exact calculations can be performed. In this paper we st
the magnetization distributionP(m) of a family of such
Gaussian Markov processes parametrized by an indexa. By
varying this parametera, the persistence exponentu for this
process can be varied continuously. The Markovian natur
the process also makes many exact calculations possibl

The Markov processy(t) that we study in this paper
satisfies the following stochastic Langevin equation:

dy

dt
5A2ata21/2h~ t !, ~1!

whereh(t) is a Gaussian white noise witĥh(t)&50 and
^h(t1)h(t2)&5d(t12t2) and a is a positive parameter
There are various physical processes that are describe
the above Langevin equation. For example, fora51/2, y(t)
represents the position of a one-dimensional Brownian r
dom walker. Fora51/4, y(t) can be interpreted@11# to be
the ‘‘total magnetization’’ of a Glauber chain undergoin
zero temperature coarsening dynamics after being quen
rapidly from infinite temperature.

The persistence of the processy(t) is simply the probabil-
ity for this process not to cross zero up to timet and decays
as t2u for large t. The exponentu for this process can be
trivially computed,u5a. The simplest way to derive this i
to define a new time variablet85t2a such that the equation
of motion becomesdy/dt85z(t8) where the new noise
z(t8) has zero mean and̂z(t18)z(t28)&5d(t182t28). But this is
simply the equation of motion of a one-dimensional Brow
ian walker whose probability of no return to zero up to tim
t8 decays as;1/At8;t2a. Thus the persistence exponent f
y(t) is simply u5a.

However, we show in the rest of the paper that ev
though the persistence exponentu5a trivially for this pro-
cess, the magnetization distributionP(m) is nontrivial. In
fact, as a and henceu is increased, the shape ofP(m)
changes from concave upwards to convex upwards. Foa
51/2 ~i.e., for ordinary Brownian walker!, the distribution
P(m) was already known exactly,P(m)51/(pA12m2)
@26#. For generala, while we have not been able to dete
mine the full distributionP(m) in closed form, we demon
strate below by two completely different methods that
moments ofP(m) can be calculated exactly. In the fir
for
p-
t

ly

d
th

y

of

by

n-

ed

-

n

e

method we generalize the formalism developed by Kac@31#
for a51/2 case to arbitrarya. In the second method, we us
the formalism recently developed in the context of diffusi
equation by Dornic and Godre`che @24# using independen
interval approximation~IIA !. We point out, however, tha
while this latter method yields only approximate results
the diffusion equation@24#, it gives exact results for the Mar
kov processes that we study in this paper.

The paper is organized as follows. In Sec. II, we gene
ize Kac’s formalism fora51/2 to arbitrarya and derive an
exact recursion relations satisfied by the moments ofP(m).
In Sec. III, we rederive the same results by using an altern
IIA formalism. In Sec. IV we use the formalism developed
Secs. II and III to obtain explicit results for the distributio
of mean magnetization for some special values of the par
etera. Finally we conclude with a summary and discuss t
relative merits of the two formalisms and some applicatio

II. METHOD I: GENERALIZATION
OF KAC’S FORMALISM

We consider the Gaussian processy(t) evolving stochas-
tically via Eq. ~1! and define the ‘‘mean magnetization,
m(t)5(1/t)*0

t V@y(t8)#dt8, where the functionalV(y) in our
case is simplyV(y)5 sgn(y). Let G(y,tuy8,t8) denote the
propagator of the process, i.e., the probability that the p
cess takes the valuey at timet given that it was aty8 at time
t8,t. This can be easily computed for our process and
given by

G~y,tuy8,t8!5
1

A2p~ t2a2t82a!
e2(y2y8)2/2(t2a2t82a).

~2!

Following Kac @31#, we define the moment generatin
function

^e2utm&5 (
n50

`
~2u!n

n!
nn , ~3!

wherenn are the moments defined by

nn5K S E
0

t

V„y~ t8!…dt8D nL . ~4!

To compute the momentsnn , it is useful to first define a se
of functionsQn(y,t) via the recursion relation

Qn11~y,t !5E
0

t

dt8E
2`

`

dy8G~y,tuy8,t8!)V~y8!Qn~y8,t8!,

Q0~y,t !5G~y,tu0,0!. ~5!

It can then easily be checked that

nn5n! E
2`

`

Qn~y,t !dy. ~6!

Using Eqs.~3! and ~6!, we finally get
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^e2utm&5E
2`

`

dy Qu~y,t !, ~7!

whereQu(y,t) is the generating function

Qu~y,t !5(
0

`

Qn~y,t !~2u!n. ~8!

Thus the moments of the mean magnetizationm can be
computed exactly from Eq.~7! provided we can evaluate th
function Qu(y,t). By using the recursion relation Eq.~5!, it
can be checked thatQu(y,t) satisfies the following integra
equation:

Qu~y,t !5G~y,tu0,0!2uE
0

t

dt8E
2`

`

dy8G~y,tuy8,t8!

3V~y8!Qu~y8,t8!. ~9!

Using the definition of the propagatorG, this integral equa-
tion can then be converted to a partial differential equati

]Qu~y,t !

]t
5at2a21

]2Qu~y,t !

]y2
2uV~y!Qu~y,t ! ~10!

with Qu(y,t50)5d(y) andV(y)5 sgn(y).
We first make the scale transforms

z5
y

ta
, a5ut, Qu~y,t !5

1

ta
F~z,a!.

Substituting in Eq.~10! we get the following equation forF:

a
]F

]a
5a

]2F

]z2
1az

]F

]z
1@a2aV~z!#F,

~11!

F~z,a50!5
e2z2/2

A2p
,

whereV(z)5 sgn(z). This equation has the following serie
solution:

F~z,a!5
1

A2p
(
n50

`

bnaneaD2n/a~2z!e2z2/4, z,0,

F~z,a!5
1

A2p
(
n50

`

cnane2aD2n/a~z!e2z2/4, z.0,

~12!

whereDp(z) are parabolic cylinder functions@34#. The co-
efficientsbn andcn are to be determined from the bounda
conditions, namely, the continuity of bothF and ]F/]z at
z50. The initial conditions determineb05c051. Using the
boundary conditions we get
(
n50

`

bnaneaD2n/a~0!5 (
n50

`

cnane2aD2n/a~0!,

(
n50

`

bnaneaD2n/a11~0!52 (
n50

`

cnane2aD2n/a11~0!. ~13!

By expanding in powers ofa and equating coefficients of a
powers ofa we finally obtain the following recursions for th
coefficientsbn andcn:

cn5 (
m50

n21
~21!mcm

~n2m!!

D2m/a~0!

D2n/a~0!
~n odd!

52 (
m50

n21
~21!mcm

~n2m!!

D2m/a11~0!

D2n/a11~0!
cn2m ~n even!

bn5~21!ncn , ~14!

where we have used few identities satisfied by the parab
cylinder functions@34#. Now from Eq.~7! it follows that the
momentsmk5^mk& satisfy

E
2`

`

F~z,a!dz5 (
k50

`
~2a!k

k!
mk . ~15!

Finally, substituting the series solution forF(z,a) @Eq. ~12!#
in the above equation we obtain

mn5n!A2

p (
m50

n
~21!mcm

~n2m!!
D2m/a21~0! ~16!

for the even moments, while the odd ones vanish. The c
ficentscm are determined from Eq.~14!. This thus gives an
iterative scheme to generate all moments of the required
tribution.

III. AN ALTERNATE DERIVATION OF THE MOMENTS

There is an alternate scheme to calculate the momen
the distributionP(m). This scheme assumes statistical ind
pendence of the successive zero crossing intervals of the
cessy(t) and was first used by Dornic and Godre`che in the
context of diffusion equation@24#. We stress, however, tha
while this assumption is only approximate for non-Mark
processes such as the diffusion equation@24#, it is exact for
Markov processes such as the one we study in this paper
additional complication in our case arises due to the fact
the average distance between zero crossings vanishes. T
a standard result which is true for any Gaussian Mark
process@32#. In our calculations we introduce this averag
distance between two consequtive zeros^ l & as a cutoff pa-
rameter and then take the limit^ l &→0 in the end.

Consider a particular realization of the processy(t) end-
ing at timet. Let at timet the processy have a positive sign.
Let t j denote the time instant at which thej th zero crossing
takes place. Then the mean magnetization is given by

m5
1

t
@~ t2t j !2~ t j2t j 21!1•••#5122j,
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where

j5
t j

t
2

t j 21

t
1

t j 22

t
1•••.

Similarly if y(t),0 then we getx52j21. We note that at
any t, the sign ofy can be positive and negative with equ
probability. Hence if we can find the distribution ofj, that of
m can be computed easily. Now in the logarithmic time va
ableT5 ln(t), we can writej in the form

j5e2(T2Tj )2e2(T2Tn21)1e2(T2Tn22)1•••

5e2l~12e2 l j1e2 l j 2 l j 211••• !

5e2lXj , ~17!

where

Xj512e2 l j1e2 l j 2 l j 211•••, ~18!

l j5Tj2Tj 21, andl is the time from the last zero crossing
time t. The variablesXj satisfy Kesten recursion relations

Xj512e2 l jXj 21 . ~19!

One then assumes that the successive zero crossing inte
are statistically independent. In the long time limit the dist
bution of X is determined by Eqs.~17! and ~19!. Since one
can compute the distributions ofl andl, it is then straight-
forward though tedious to compute all the moments of
mean magnetization,mn5^mn& recursively@24#.

As noted above, the mean distance between zero cr
ings^ l & vanishes and we introduce this as a cutoff parame
We now show that them j are actually independent of^ l &.

We first note that the Laplace transforms of the distrib
tions of l andl, which we denote byf̂ (s) and q̂(s), respec-
tively, are given by@24#

f̂ ~s!5
12^ l &g~s!

11^ l &g~s!
,

~20!

q̂~s!5
2g~s!

s@11^ l &g~s!#
,

whereg(s)5s@12sÂ(s)#/2, andÂ(s) is defined as follows.
Consider the normalized processY5y(t)/A^y2(t)&. In the
logarithmic time,T5 log(t), this has a stationary autocorrel
tor, C(T5uT12T2u)5e2auTu. Now consider the autocorrela
tion function A(T) of the ‘‘signed’’ process A(T)
5^sgn@Y(0)#sgn@Y(T)#&. The quantity Â(s) is just the
Laplace transforms ofA(T). Using the fact thaty(T) is
Gaussian with a correlatorC(T), the functionA(T) can be
easily computed,A(T)5(2/p)sin21@C(T)#. In our case,
C(T)5e2auTu which finally gives

Âs5
1

s
2

1

sp
BFs1a

2a
,
1

2G , ~21!

whereB@a,b# is the standard Beta function.
It is now convenient to define the momentsr j5^Xn&/(1

1^ l &gn). Then taking thenth power of the equationX51
-
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e
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-

2e2lX and using the expression forf̂ (s) given in Eq.~20!, it
can be shown thatr n’s are recursively generated through th
following sets of equations:

2r 2n115 (
k50

2n S 2n11
k D ~21!kr k ,

2g2nr 2n52 (
k51

2n21 S 2n
k D ~21!kgkr k ~22!

with r 051. Note that allr n’s are independent of̂ l &. The
moments ofj are then given by

^jn&5q̂~n!^Xn&5
2gnr n

n
~23!

and are also independent of the cutoff^ l &. Finally the non-
vanishing even moments ofm can be obtained through

m2n5^~2j21!2n& ~24!

and clearly do not depend on^ l &.
The final expressions of the first few even moments are

follows @see Eq.~B4! in the Appendix of Ref.@24##,

m25Â1 ,

m4512
~123Â114Â2!~123Â3!

122Â2

•••. ~25!

We have checked that the momentsmn’s calculated recur-
sively by this method are identical to those obtained by
first method in Sec. II.

IV. MOMENTS FOR SOME SPECIAL VALUES OF a

In this section, we use the formalisms developed in
previous two sections to derive some explicit results for
moments of the distributionP(m). While the iterative
schemes developed in the previous sections are exac
seems that for generala it is quite hard to obtain an exac
closed form expression ofmn for aribitrary n. They have to
be determined only recursively. However, the equations s
plify for some special values of the parametera, for which
not just the moments but the full distributionP(m) can be
obtained explicitly.

In order to see that the peak of the distribution shifts fro
m561 for small a to m50 for large a, it is natural to
examine the two extreme limitsa50 anda5` for which
fortunately we can obtain exact form of the distributio
Consider firsta50. In this case it is somewhat easier
consider the second method used in Sec. III. It can be ea
seen then that all thegn’s vanish while the momentsr n’s
remain finite. Thus from Eq.~23! all moments ofj vanish.
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Hence from Eq.~24! we getmn51 for all evenn. The same
result can also be derived via the first method of Sec. II
taking carefully thea→0 limit in Eqs.~14! and~16!. Imme-
diate inspection then determines

P~m!5
1

2
@d~m21!1d~m11!# ~26!

for a50. Now consider the other extreme limit,a5`. In
this case, one finds from Eq.~14! that cm51/m!. Then the
series in Eq.~16! just reduces to the expansion of (121)n.
Hencemn50 for all n. This indicates that fora5`

P~m!5d~m!. ~27!

Another case where exact form ofP(m) can be obtained
is for a51/2. In this case, using the known values of t
parabolic cylinder functions, it is easy to compute the fi
few terms of the series$cn , n50,1,2, . . . %5$1,1,2,5,14,
42,132,429, . . . % from Eq. ~14!. We then make an ansat
cn5(2n)!/ @n!(n11)!# and verify from Eq.~14! that it is
indeed the solution for arbitraryn. Substituting this in Eq.
~16!, we get

m2n~a51/2!5
~2n!!

~n! !222n , ~28!

and the odd moments are identically zero. A little inspect
then shows that these are the moments of the distribu
function

P~m!5
1

pA12m2
~29!

with m varying in @21,1#. We thus reproduce the we
known @26# magnetization distribution for the ordinary ran
dom walk (a51/2).

Unfortunately we were unable to get a closed form e
pression ofmn for other values ofa. For example, for
a51/4, we get by solving Eq.~14! the first few terms of the
sequence, $cn ,n50,1,2, . . .%5$1,3,72,3663,292824
32227002, . . .%. We found, however, that this is not liste
in the catalog of known integer sequences@35# and we could
not guess any formula for this sequence.

Thus as expected, the distributions of mean magnetiza
show a qualitative change in shape asa changes. As we go
from small a to largea, the peak of the distribution shift
from the edges to the center. This can be understood ph
cally since for smalla the noise becomes small as tim
increases and the probability of zero crossing becomes
ligible. On the other hand, for largea, the noise increase
with time and the magnetization keeps changing sign
thus the most probable value gets peaked atm50.

While obtaining an exact form ofP(m) is difficult for
generala, there is no problem in obtaining the exact valu
of the moments ofP(m) by using the recursion relations an
the known values of the parabolic cylinder functions. In F
1 we plot the moments fora51/4, 1/2, and 3/4.
y
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V. CONCLUSION

In this paper, we have studied the distribution of residen
times or equivalently that of mean magnetization of a fam
of Gaussian markov processes parametrized by an indea
which takes values continuously from 0 tò. We have
shown that the shape of the distributionP(m) undergoes a
qualitative change asa is increased from 0 tò . For smalla,
P(m) has peaks at the edgesm561 and has a minimum a
m50 whereas for largea, the peak of the distribution shifts
to m50 with minima at the edgesm561. This change in
the ergodicity properties of a stochatic process as
changes a parameter was first noted in Ref.@25# in the con-
text of diffusion equation. The advantage of the process s
ied here, apart from representing various physical situatio
is that the Markov nature of the process makes it possibl
derive many exact analytical results.

In this paper we have developed two alternate formalis
to compute the moments of the residence times or m
magnetization. While both methods yield exact results
the moments, they do so only recursively. A closed fo
expression for the moments and hence that of the full dis
bution is possible only for some special values of the para
eter a that characterizes the process. But unfortunately
special set of solvable values ofa turn out to be the same fo
both these methods. Thus, as far as the problem studie
this paper is concerned, both these methods are on e
footing. However, there are other problems where the form
method that generalizes Kac’s formalism seems to have
advantage over the second method. We briefly mention
low one such application.

The general problem of a random walker in space w
moving boundaries has been well studied and has a lo
applications@33#. It would be interesting to study the res
dence time distribution in such problems. For example, c
sider a random walker moving in one dimension and a
what is the distribution of the fraction of time spent by th
walker in the region bounded by1` and a pointO that
moves deterministically asxO(t) wherexO(t) is some arbi-
trary function of t. For the special case whenxO(t)5cAt
wherec is a constant, this problem can be solved by us
the techniques presented in Sec. II of this paper. The ca

FIG. 1. In this figure the first few nonvanishing moments
P(m) are plotted fora51/4, 1/2, and 3/4.
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lations will be similar except that the potentialV(z)
5 sgn(z) as used in Eq.~11! should be replaced byV(z)
5u(z2c). The corresponding equations can be solved
before except that now the boundary conditions are to
applied atz5c. We note, however, that the second meth
illustrated in Sec. III does not seem to be easily generaliza
to solve this problem.

We conclude with one last remark. The magnetizat
distributionP(m) is a useful quantity to study for a gener
stochastic process and contains a lot of useful informa
regarding ergodicity, etc. However, as is obvious from
nt

ys

s

ev

ys

.

s
e

d
le

n

n
e

efforts of this paper, exact analytical calculation ofP(m)
seems quite nontrivial even for the simple Gaussian Mar
processes studied here. Thus at present, the only hop
computeP(m) for non-Markov processes which are rich
and more abundant in nature, seems to be via numerica
approximate methods.
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