PHYSICAL REVIEW E, VOLUME 65, 041102
Persistence of a continuous stochastic process with discrete-time sampling: Non-Markov processes

George C. M. A. EhrhardtAlan J. Bray! and Satya N. Majumdar
1Department of Physics and Astronomy, University of Manchester, Manchester, M13 9PL, United Kingdom
2Laboratoire de Physique Quantique (UMR C5626 du CNRS), UnivePsité Sabatier, 31062 Toulouse Cedex, France
(Received 11 December 2001; published 25 March 2002

We consider the problem of “discrete-time persistence,” which deals with the zero crossings of a continuous
stochastic proces$(T) measured at discrete tim&s=nAT. For a Gaussian stationary process the persistence
(no crossing probability decays as exp@@pT)=[p(a)]" for large n, wherea=exp(—AT/2) and the discrete
persistence exponem, is given by 6y =(In p)/(2 Ina). Using the “independent interval approximation,” we
show how@p, varies withAT for small AT and conclude that experimental measurements of persistence for
smooth processes, such as diffusion, are less sensitive to the effects of discrete sampling than measurements of
a randomly accelerated particle or random walker. We extend the matrix method developed by us previously
[Phys. Rev. E64, 015101R) (2001)] to determinep(a) for a two-dimensional random walk and the one-
dimensional random-acceleration problem. We also consider “alternating persistence,” which corresponds to
a<0, and calculate(a) for this case.
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[. INTRODUCTION tence of a discrete sequence as opposed to that of a continu-
ous process. It turns out that many continuous processes in
Persistence of a continuous stochastic variable has rexature are stationary under translations of tiomy by an
cently been a subject of considerable interest among botimteger multiple of a basic perio@vhich can be chosen to be
theoreticians and experimentalists. Systems studied includenity without any loss of generality For example, the
randomly driven single degrees of freeddi4], simple  weather records have this property due to seasonal repeti-
diffusion from random initial condition$5,6], models of  tjons. It has recently been shoy?2] that for a wide class of
phase separatioiY—17,, fluctuating interface§18-20, and  gych processes, the continuous time persist@(¢k is the
reaction-diffusi.on proc_essézl—Zq. Eqr arecent review see game as the persistenBén) of the corresponding discrete
Ref. [25]. Persistence is the probabilif(t) that a fluctuat-  gequence resulting from the measurement of the continuous
ing nonequilibrium field, at a particular space point, has N0y, only at discrete integer points. In general, the calcula-
c_rossed a certain thresho(d_sually Its mean vall)_eup_to tion of the persistence of a discrete sequence is much harder
;'mTt‘ In most sryl/_zt.ems stud|ed|, chle mvanancealm[r)]hes thatthan that of a continuous process, except in special cases
e e e s oy WPerEP(r)can b compud exacge 3. he ol
have been developed over the last decade for studying the

dence ofP(t) on the whole history of the system. Experi- . . .
ments have recently measurédor the coarsening dynamics persistence of a continuous process are often not easily ex-

. I tendable to the case of discrete sequences and one needs to
of breath figure$26], liquid crystalg27], soap bubblef28], ) , ) ) ,
and diﬁusilgrt: of$Xe] ggqsu'in or):e diierﬂsicﬁﬁg]p. . B8] invoke different techniques, some of which are presented in
In this paper we consider the following problem: in any this paper.

experimentalor numerical measurement of, the stochas- h T_hz Iayogt of _this palper is as foI_Iotvxs. IQGSEC%.”dWﬁ use
tic variable studiedx(t), will have to be sampled discretely. the independent interval approximatidi ) [5,6] to find the

It is, therefore, possible that(t) could cross and then re- first correction tod for smallAT, whereAT is the separation
cross its threshold between samplings, resulting in a falsle Sa”_”P"_”gsf In Iogarlth_mlc_ _tlme'l'(=lnt). This gives us
positive classification of the persistencestt). If the sam-  SOMe indication of how significant the effect of discrete sam-

pling is logarithmically spaced in timés was the case in Pling is. For example, for the random waik, — 9“_}/4_T
Ref. [29]), then such undetected crossings will make the?nd SO the discrete exponefg and its continuum limitg
measured persistence exponent smaller than theory predidi€9in to deviate markedly as soon asf>0. For the
(while if the sampling is uniform in real time only the pref- random-acceleration problem, one findg—f=—AT, a
actor is changed This problem has been studied in RE0] weaker depen.d'e.nce anT_, 'wh|le for the dlffusz|on equation
for the case of a random walker in one dimension, a simpldérom random initial conditions¢p— 6> —(AT)?, so the ef-
Markovian, “rough” (i.e., with a fractal distribution of cross- fect of discrete sampling for smaT is much less signifi-
ings [31]) process. Here we extend that work to consider &ant in this case. These thre_e systems display an increasing
simple, nonMarkovian, “smooth” process: a randomly accel-Smoothness” of the underlying process, a concept we will
erated particle. Since most of the more complex processe&Pand upon below. _
studied experimentally are “smooth,” this paper is a step |0 Sec. lll we illustrate our general method for solving
towards understanding the effect discrete sampling has olRW-dimensional discrete persistence problems by consider-
those measured persistence exponents. ing the case of a random walker in one dimensig(t)
There is yet another motivation for studying the persis-= 7(t), wheren(t) is Gaussian white noise. A brief account
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of this work was given in Ref.30]. We map the problem to wherePy(T) is the continuous-time persistence probability,

a Gaussian stationary proce$&SP in the variable X  given byPy(T)~e T for T large, andPyy, (N, AT) is given

=x/+t by transforming to logarithmic time. In the new vari- by

ables, the random walk is represented by an Ornstein-

Uhlenbeck process. We repose this problem in terms of a p (n AT)mne—HnATJATdT JATdT P(T,—Ty)

backward Fokker-Plank equatidBFPE) and give the solu- dblel ™ I

tion for the continuum case where the persistence exponent (2

has the well-known valugg=1/2. We then formulate the . . o .

discrete persistence problem in terms of an eigenvalue inté¥here P1(T) is the probability distribution of the interval

gral equation. Employing a power series expansion of th&iZ€ and we ha'vel assu.med that the durations of dlfferent

integrand reduces the problem to a matrix eigenvalue equépterval_s are statlstlcal_ly independent. The latter assu_mptlon

tion, whose largest eigenvalue gives us the persistence expls- Precisely the 1lA. It is clear from Eq2) that, to leading

nent measured by discrete sampling. The concept of alterna@/der inAT, we only require the form oP(T) in the limit

ing persistence, in which the consecutive measured values ¢f—0- The functionP,(T) can be found using the IIA and

X lie on alternate sides of the threshold value is also introfor the processes currently under consideration—the random

duced andd,, is calculated for this case. walk, random acceleration, and diffusion from random initial
Having demonstrated the matrix method on a single variconditions—the smalF results areP;(T)=1/\T, 1, andT,

able problem, we then apply it to two-variable problems: the'espectively. All three cases are incorporated in the general

two-dimensional random walk(t) = 7(t), in a wedge ge- (oM P1(T)=T" with a=—1/2, 0, and 1, respectively. Us-
ometry(Sec. IV), and a randomly accelerated particle in onei"d this form in Eq.(2) gives
dimensionx(t) = #(t), which is a simple example of a non- Po(T)=Po(T)+ ynAT+2e T (3)
Markovian processSec. V). Surprisingly, for alternating
persistence in the continuum limiAT=0) the asymptotic where y is some constant. Sinc&=nAT and Py(T)
probability of surviving one further sampling, is nonzero, ~e T  we have
a phenomenon contrary to our earlier suggesfi®®d] that T ol
this should only occur for “rough” processes. Using scaled Po(T)=Ae " (1+BTAT*™), (4)
variables and logarithmic time, _the random-accele_ratiothereA, B are constants, and so, to lowest ordeni,
problem maps onto a damped simple-harmonic oscillator,
which we study for the overdamped case using the matrix Po(T)=Ae “TeB TATATL (5)

T . . D .
method, findingdp as a function oA T. Using the results of
a correlator expansion developed in Re¥4| we also study  SinceP,(T)~e~ T, we obtain
the underdamped case, an example for which the correlator is
oscillatory (Sec. V). We show that when the time interval Op=0—BATY"L, (6)
AT between measurements is equal to the period of the os- . o
cillation, the problem is identical to the Ornstein-UhlenbeckFor the random walk, random acceleration, and diffusion
process studied in Sec. Ill, while f&T equal to one-half of from random initial conditionsgp— g — AT, —AT, and
a period the problem reduces to that of alternating persis= (AT)?, respectively. From this we expect that the discrete
tence in the Ornstein-Uhlenbeck process. The paper corsampling is important as soon a§ is nonzero for the ran-

cludes with a summary of the results. dom walk, this being related to the fact thaf(T)— for
T—0, i.e., that the distribution of crossings is fractal and
Il. SMALL AT CORRECTION TO @ hence this process is “rough31]. The persistence exponent

for the random-acceleration process is lineaAih and thus
The independent interval approximatif 6] uses the as- we expect it to be less affected by the discrete sampling for
sumption that the intervals between zero crossings of a GS&nall AT . In Secs. Ill and IV these expectations will be
are independently distributed. Although this assumption igonfirmed using the matrix method perturbative expansion in
not valid for most processes, it nevertheless gives remarka=e~272 abouta=0. Finally, for diffusion from random
ably accurate estimates férin many cases. Here we use the injtial conditions, the AT)? dependence indicates that dis-
same assumption to find the first correctionstalue to dis-  crete sampling will be relatively unimportant for small.
crete sampling with a spacing in logarithmic time®T for  Finally we note that, although E¢6) has been derived using
AT small. the 11A, we expect it to be valid quite generally. In particular,
As AT is increased from zero, the first correction 40  the =2 result forP,(T) has been proved correct by Zeitak
comes from paths that are always positive apart from ong37], the IIA even giving the correct coefficient.
undetected double crossing between consecutive sample
times. Let the probability of one such double crossing occur- I1l. RANDOM WALK IN ONE DIMENSION
ring in the intervalT=nAT be Py (n,AT). Then, forT
large, the probabilityP,(T) that the stochastic variable is  Let us consider the simple case of a random walker in one
positive at alln samplings is given, to lowest order &iT, by ~ dimension,

Po(T)=Po(T)+ Pgpie(n,AT), (1) x(t)= (1), @)
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where 7(t) is Gaussian white noise with zero mean and

(n(t)n(t"))=2D4S(t—t"). For convenience we map this Qn+1(X)=J dY QY) 5
process, which is nonstationary in time, to a Gaussian sta- 0 V27D’ (1-a%)
tionary process by defining new space and time variaKles Y—aX)?2
=x/+'t andT=Int. Equation(7) then reads __(Y=ax)®
2D’ (1-a?%)
d_>(:_ﬂx(-|-)+,7(-|—), (8)  with the continuum equation being recovered in the limit

dT AT—0.

Making the change of variables=X/\D’(1—a?), y
where(n(T)»(T'))=2D8(T—T') andu=1/2 for the ran-  =vy/,D’"(1—a?), andQ,(X)=Q/(X) gives
dom walker, although other values pf can be considered.
This Ornstein-Uhlenbeck problem can be more usefully 1 [
solved using the BFPE. L&)(X,T) be the probability that Qh+1(X)= N f dy Q,(y)exd —(y—ax)?/2]. (14)
the random walker, starting fror at time T=0, does not 770
cross the origin X=0) up to timeT. Then from Eq.(8) it

At late times, withu>0, we expectQ’ . ,(x)=pQ.(x) in
can be shown tha®(X,T) satisfies H pectn . 1(X) =pQn(x)

analogy with the continuous case wher@(T+AT)
=P(T)e T sop=e AT, We, therefore, expect that, for
dQIdT=D #*Ql 9X*— uXQl dX, (9 largen, Q,(x)— p"q(x). Substituting this into Eq(14) gives
an eigenvalue integral equation fg(x)
with initial condition Q(X,0)=1 for all X>0 and boundary

" _ o T — g 1 [
conditionsQ(0,T)=0 andQ(«,T)=1. The solution is p(X) = _f dy o(y)ex — (y—ax)%/2], (15
V2mJo

e #T
Q(X,T)=eri{ X|, (10 with an eigenvaluep(a) that depends continuously cm
V2D'(1-e 2#T) Equation(15) has an infinite number of eigenvalues, but at
late times only the largest will remain sin&p{'~ py,., for

where erff) is the error function an®’' =D/ u. For largeT  largen (there is no other eigenvalue contiguous to the largest
(and positive u), P(T)~Xe #T, which corresponds to eigenvalug By symmetrizing the kernel in E415), one can
P(t)~t~?in real time, withd= . use the variational method to find a rigorous lower bound for

We now consider discrete persistence, i.e., the probabilitp [30]. This method cannot be applied to the random-
Q,(X) that starting atX our field/variable is positive at all acceleration problem, however, since the kernel cannot be
the discrete sample timed,=AT, T,=2AT,... T, symmetrized. FOAT—oo, correlations between thgh and
=nAT. This is relevant for experimental or numerical deter-(n+2)th samplings are negligible, so
minations ofé since in practice one will have to sample only
at discrete points. In Ref29], for example, the sampling is
done logarithmically in real timéwhich corresponds to sam- (16)

P,~[Prob (two consecutive points have the same $ign

pling uniformly in logarithmic tim¢. Note thatdp will, in 1 1 n
general, be smaller than the continuum valueince any = §+ E(sgr[X(O)]sgr{X(AT)])) (17)
even number of crossings between samplings will go unno-
ticed. One can write down a recurrence relation@y(X), 1 12 n
=5+ E;arcsir{C(AT)]) \ (18

Qn+1(X)= fo dYQ(V)P(Y.ATIXO), (1) whereC(T,—T;) =exd —u(T,—T,)] is the normalized auto-

correlation function oiX(T), i.e., C(T)=(X(T)X(0))/(X?).
where P(Y,AT|X,0) is the Greens function, i.e., the prob- Hence, for largeT,
ability that a particle starting &t at time zero will be aly at 1
time AT. For a Gaussian procesB(Y,AT|X,0) can be p==+
found from the mean and variance X{T), 2

T (19

Equation (15) can also be solved perturbatively by ex-

1 Y—aX)? anding the exg@(xy) term as a power series @
P(Y,AT|X,0)= ——=6x —¥ , P 9 R P
V27D’ (1—a?) 2D’(1-a?%) B m
(X)= ijd ( )e*yZ/Ze*aZXZIZ (axy)
(12) pq = /—277 0 yaly ~ i

o . (20)
wherea=exp(—uAT). This gives us the discrete analogue of
the BFPE(9), Defining
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m/2

b= f dy q(y)y™e " (21)
gives
pa(x)= ﬂ -”2’22 r(ﬁx)f“ (22
Multiplying through bye " and integrating ovex>0
gives
pbn= 2 Anmbm (23
m=0
where
A 1 2a \(""M2T[(n+m+1)/2]
" Jam(1+ad)\1+a’ nm
(24)

By this method, the eigenvalue integral equatihf) has
been converted to the eigenvalue matrix equats), and

the problem reduces to computing the largest eigenvalue
anNX N submatrix whoser{,m)th elements decrease expo-
nentially in n+m. In [30] we determinedp numerically to
one part in 1&. We have also algebraically foung,,, as a

series expansion ig, the first four terms being

48— 367+ 772
67

_1+a+7r—2
T3t

2
a“+
2

as+---. (25

The coefficients up to ordex*® are given in Appendix B.

PHYSICAL REVIEW E 65 041102

seen thap(1/a) =p(a)|al for a<1, so one need only inves-
tigate alternating persistence in the rangé<a<0. Fora
>1 it is possible for the walker to escape to infinity, i.e.,
gn(x)-+0 for n—o. The asymptotic limit forg(x) whena
>1 may be found using the matrix method in the following
way. Sinceq(x)—1 asx—oo, it is more convenient to study
a new functionu(x) defined by the relation

4 =1-q(0) fju(y)dy, (29

whereq(0) is fixed by Eq(28) with x=0. Substituting(x)
from Eq. (28) into Eq. (15) (with p=1 since we are finding
the stationary stajewe find, after some algebra, thafx)
satisfies the integral equation

a
ux)=—
T

e—aZX2’2+f u(y)exd — (y—ax)?/2]dy|.
0

(29

Note that, unlike Eq(15), which determines|(x) only up to
an overall multiplicative constant, ER9) is an inhomoge-
neous equation that fixagx) absolutely, as one expects on

(Rhysmal grounds.

As before, we expand the factor eagg) in Eq. (29) as a
power series to obtain

—a?x2/2

u(X)= —

1+Z
n=0

anx" [
n! Jo dyynu(y)e_m]
(30

Multiplying through by x™(a™?Jm!)e **2, integrating
over positivex, and defining

a
2

For AT—0, a—1, and convergence becomes progressively /2

slower. However, the variational method still works in this

region.

dy y'u(y) e ¥’ (31)

C.=
" Untto

One may also consider the case of alternating persistence,

i.e., the probability thaX(nAT) is positive for every even
and negative for every odd (or vice versa The limit of
integration in Eq.(15) then changes, giving

0
= — — p— 2
Pq(x) ﬁfxdyq(y)exq (y—ax)?/2].  (26)

Substitutingy— —y, swapping the limits of integration and
usingq(—y)=q(y) (since the process is symmetric around

y=0) gives

pa(x)= % J:dqu)exp[— (y+ax?/2l, (27

which is identical to Eq(15), but with a replaced by—a.
Therefore, replacin@ by —a in the matrix equation(23)
will give the alternating persistence eigenvalpg,. The

gives

ch=al Ayt mE:() AnrCinl, (32)

whereA,,, is our previous matrix given by Ed24), and

()= e | 1+ E Gl 33
u(x)= .
\/277 ! Cn
Equation(32) can be solved by matrix inversion
ch=a2 (B™HnnAmo, (34)
where
Brm= Ohm—aAnm- (35

casela|>1 may also be considered, this corresponding to

©<0 and hence to an unstable potential in the OrnsteinThe solution converges rapidly as a function of the $izaf
Uhlenbeck process. For the alternating case,— 1, the cal-  the matrix. In practicelN of order a few hundred gives very
culation proceeds as before. In fact, from E2¢) it can be precise results.
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AT FIG. 3. Plot of eigenfunctiong(x) for a=0.5(lower curveg and
FIG. 1. Plot ofp(a) vsa(a=e #%"), wherea<0 corresponds a=2.0 (upper curve, absciss®x).

to alternating persistence.

In Fig. 3 we show the eigenfuncticg(x) for the casea
. . . =0.5. This function was obtained by substituting the eigen-
sistence, yvh|l_e I_:|_g. 2 shows(a). Note_ that even for vector of the matrixA corresponding to the largest eigen-
=0.96, 0p is _S|gn|f|cantly below thg continuum value of 1/2. value into Eq.(22). The asymptotic behavior for largeis
We arg“e‘t’A'T“l,zs?C- . thatl_thelgltcferenaﬁ(ll)_—6(|a) de- q(x)~x”, where v=Inp/lna=0.530661 fora=0.5 [30].
creases a , 1.e., as (Fa)™ for a—1, implying a  gjgre 3 also contains a plot of(x), given by Eq.(28), for

§quare—rqot cusp .atzl In '.:'g' 2._Wonge§ al.[29], measur  the casea=2, which corresponds to an unstable potential.
ing persistence in one-dimensional diffusion of Xe gas,

sampled logarithmically in time such that in log time their
AT was about 0.24. If the process were a random walk, this
would givea~0.9 and a difference betweel, and the con-
tinuum ¢ of about 20%. For the diffusion equation that de-  Having illustrated the perturbative method on a simple
scribes the experiment, however, the approach to the cofyarkovian case for which another approathe variational
tinuum is more rapid(see the discussion in Sec),lland  method is available, we intend to study a simple “smooth”
rather accurate results are obtained everdfdr=0.24[34].  non-Markovian process, the random-acceleration problem,

x=n(t). This process is equivalent to a Markovian problem
in two variablesx(t) and v(t), wherev=7(t) andx=v.
Before dealing with this problem, we will first consider an-
. other two-variable Markov process, namely, the random
walk in two dimensionsx= 7,(t), y=n,(t), with (7(t))

=0 and(7;(t) »;(t'))=2D & 6(t—t"). Using the perturba-
tive approach on this pedagogical problem will clarify its use

Figure 1 shows(a) for both alternating and normal per-

IV. RANDOM WALK IN TWO DIMENSIONS:
WEDGE GEOMETRY

0.6

o 04 1 on the random-acceleration problem.

Consider a wedge of angle whose boundaries are ab-
sorbing, let our random walker start inside this wedge at
radial positionr and angle¢, with 0<¢=<«a. Making the

0.2 A change of variabl®=r/\t and T=Int, converts the prob-

lem into a GSP, as in Sec. lll. The corresponding BFPE, i.e.,
the two-dimensional analog of E¢P), is

0 ‘ QI IT=V?Q— uRIQ/IR, (36)
-0.5 0 0.5 1
a where u=1/2 for the random walk, though we will treat
FIG. 2. Plot of 6(a) vs a(a=e #AT), where ¢ @as arbitrary, an@(R, ,T) is the survival probability of the
=In[p(2)J/(2 Ina) anda<0 corresponds to alternating persistence. Particle at timeT given that it started atR, ¢). The initial
For a—1, the series has not yet converged as the dyitgrm  condition iSQ(R, ¢#,0)=1 for R>0 and 0< ¢<«, while the
amplifies the small numerical error g(a), while fora——1, ¢  boundary conditions areQ(R,0,T)=0, Q(R,a,T)=0,
~ 1/In(jal). Q(0,¢,T)=0, andQ(»,¢,T)=1 for 0<¢$<a. The solu-
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tion can be obtained using separation of variables. Its

asymptotic form forT—o at fixedR and ¢ is

Q(R, ¢, T)xR™sin(wpl a)exp( — unTla), (37)

giving 6= pm/ . Now consider the discrete persistence. The

analog of Eq(15) is

1 ’ ’ ’ 2
PQ(f)=§J dr'q(r')exgd —(r’'—ar)52], (38

wherea=exp(—xAT) as beforer=(1—a? '?R, and the
integration is over the wedge. Note that te# 7 one can do
the integration ovex and recover the one-dimensional result.
In polar coordinates, E438) becomes

1 % @
pq<r,¢>=§f r'dr'Jod¢'q(r',¢'>exp[—{r”-’+a2r2

0

—2arr'cog ¢—¢')}2]. (39

PHYSICAL REVIEW E 65 041102

0.8

0.6

Pa(0r)

0.4

0 1
Oorn ir
o

2n

FIG. 4. Plot ofp,(«) againste,a= 0.8 (top curve, 0.6,0.4,0.2,
also the alternating cases=-0.2,-0.4,—0.6,-0.8 (bottom

As before, we expand the exponential term containing th&urve. The lines are linear interpolations between the discrete data

mixed terms

exgarr'cog¢—¢')]

= > a™ " (rr’)™ ""[cog ¢p)cog ¢’ )™

m’,n’

X[sin(¢)sin(¢’)]" /[m’In"1], (40)

and define
bm,n,z[a(m'”')’zlx/m’!n’!]f dg’
0

% fwdr’ r’m,*”’+1e7r’2/2[00§n’(¢’)8inn’(¢’)]
0

Xq(r',¢'), (41)
giving
pa(r,¢)=[e* T2 (2m)] 3, rm+nam' )2
X[cos™ ()sin" ()b /\/m'In'.
(42)

Multiplying throughout by
(@Mt M2/ i nl)rmn+1e=r%2 codh 4)sin( ), (43)

and integrating over the wedge, gives

PbngE Amn,m’n’bm’n’- (44)
Note that, by regardingnn as a single index, we can treat
Annmn @s a conventional matrix when solving numerically
for p. The matrix elements are

points.
1 2a (m+n+m’+n’+2)/2
A It —
M 4 raminim’ i1 [@%+ 1

XT[(m+n+m'+n"+2)23nnmn s (45

where

S = | 0 Toos )17 sin )77 (49

The problem has been reduced to an eigenvalue matrix
equation in four variables that we solve numerically. We
have also foung as a series expansion & As before we
can consider alternating persistence, i.e., the probability that
between each sampling the particle alternates between 0
<¢<a and 7<p<a+m. Figure 4 shows a plot of the
results. The case= m corresponds to the one-dimensional
case whilea=0 and «= 1 trivially give p=0 andp=1,
respectively.

ForAT—o, p— a/27 since the system reequilibrates be-
tween samplings. In this limit the functigin «) is a straight
line from (0,0) to (27,1).

In the limit «— 0, we can expand the' integral in Eq.

(39) to first order ina, and setp=0= ¢’ to obtain

B _i ” l i i _ 12 2,2
aq(r,O)—ZWfor dr'q(r’,0exd —(r'<+a°r

—2arr’)/2], 47
which is identical to the one-dimensional random walk
equation(15) but with r’dr’ rather than justdr’, and p
replaced byy2mp/a. This gives a matrix equation similar

to that for thed=1 case, but withpoca. Also p is a mono-
tonically increasing function of as in thed=1 random
walk case. The same argument applies to the alternating case
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(wherea— —a). This explains the linear dependencepabn  which is the equation for an overdamped simple-harmonic
«a for small @ in Fig. 4 and the qualitativa dependence of oscillator,«= 8 corresponding to critical damping. Note that
the slope atw=0. Eq. (50) is symmetric under«< 8. Letting T—T/(a+ B)

In the limit a—27, we expectp—a/2w since the andX—X/(a+ B)%? gives
“mean-free path” of the particle between samplings is very
much greater than the width of the absorbing region, so that i alB X=n(T) (51)
the particle does not “see” the absorbing region and, hence, (1+ al B)? KR
the probability distribution is not affected by it . Thus dou- _ o .
bling (27— a) doubles the probability of being absorbed. Showing that6=af(«/B) and so only differing ratios o
This is true for anyA T although since the “mean-free path” t0 8 need be considered. o
«\/AT, as « is decreased from 2 the linear relationship For continuum persistence, Sirj{@5] and also Burkhardt
will fail sooner for smallerAT. The same argument applies [2] have shown thatd=1/4 for the random-acceleration
for the alternating case, but since there are two alternatingroblem @=1/2, 3=3/2). For ratios other thag=3a, no
absorbing regions, the probability distribution has more timeanalytic solutions have been found, except for the cae
to equilibrate near each absorbing region, thus the linear des1 that we give in this paper.

pendence breaks down at smallerfor a givenAT. This To derive our usual eigenvalue integral equation, we need
explains the linear dependence near 27 in Fig. 4, and its 10 find the propagatoP(X,V,T+AT|Y,U,T), that is, the
breakdown asy decreases. probability of going from {, U) at timeT to (X, V) at time

In the continuum limit @&=1) we have the resulp ~ T+AT. Fora Gaussian process, finding the means and vari-
= ula. Sincep=a’* for a=1 we getp=1 for all . The ~ @nces will completely specify the distribution.
a>0 plots in Fig. 4 are tending to this limit f@— 1. In the Let X=X—(X),V=V—(V) and defineA=e **T, B
alternating continuum limit §= —1), the particle cannot =e #AT. Then the propagator is
survive fora<r, since the two sectors that the particle must 1 1
occupy alternately are disjoint. Far>7r these two sectors _ VAV VSTV
overlap, and it is clear that the alternating persistence prob- PLVIY.U)= zwmex;{ Z(X'V)M (X’V)}
lem (a=—1) is equivalent to the usual persisten@e=(1) (52)
but with « replaced bya—m, i.e., 0=m7ul(a—m). Sop
=0 for a< andp=1 for >, i.e., we get a step function where
at a=. The a<0 plots are tending to this limit foa—

Y NCSIRE
From Eq.(45) it can be seen thai(1/a)=a?p(a) for a - <§<v> <\~/2>
<1, which enables one to construct the resultsdan the
rangea<—1 from those in the range 1<a<0. The extra and
factor of 1A compared to thel=1 case is due to the phase
space factordr rather thandx in the eigenvalue integral v v vn. Y _
equation. X=X-YB —,B—a(A B), (53
V=V-UA, (54)
V. RANDOMLY ACCELERATED PARTICLE
. . . 1
We now consider the nonMarkovian random-acceleration <;(2>= [(B—a)?— B(B+a)A?
problem. We first recast the equatior 7(t) as the two aB(B—a)*(B+a)
first-order equations = 5(t) andx=uv. After the change of +4aBAB—a(B+ a)B?], (55)
variablesV=v/t¥2 X=x/t¥2, T=Int these equations be-
come — 1 5
<XV>= m[(ﬂ—a)—(ﬂ‘f‘ a)A“+2aAB],
dv/idT=—aV+5(T), (48) (56)
~ 1
(V?)=—(1-A%, (57)
dX/dT=—BX+V, (49 a

and the eigenvalue integral equation is
with «=1/2 andB=3/2 for the random-acceleration prob-
lem, the process being “smooth” for anyand,[:}. '_I'he_noise PPL(X.V) = fdefx GUP.(Y.U)PXVIY.U),
correlator is{ »(T) n(T')}=2D5(T—T'). By eliminatingV, 0 —
Egs.(48) and(49) can be written as (58

where we are working in the forward varialie,(X,V), the
d2X/dT?+ (a+ B)dX/dT+ aBX=5(T), (50)  probability of finding the particle at positiod with velocity
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V given that it has been found at positiXeat all previous
samplings. Making the change of variabl¢,y2 DetM =X,

V/{2 DetM=v, Y/\2 DetM =y, U/\2 DetM =u,

P..(X,V)=1f(x,v) gives

pf(x,v)= %\/DetM fomdyf:duf(y,u)exq —(x3(V?)

— 20 (XV)+02(X?)]. (59
Substituting
v=v-—Au,
~ A—B
x=x—yB—uB_a, (60)

into Eq.(59), the exponent will contain all pair combinations
of X, v, y, u. This kernel is not symmetrizable —y with

v+ u, hence, the variational method is not applicable. Ex-

panding in the four mixed termsgy, xu, vy, vu, and using
the same method as before, we obtain a matrix equation
the form

Plc,d:Mc,d,e,er,f (61)
(see Appendix A As previously, we have found numeri-
cally and also as a series expansiorainexp(—AT/2). The
results forp(a) are presented in Fig. 5, and the correspond
ing results foré(a) in Fig. 6. The coefficients of the expan-
sion up to order 25 are given in Appendix B for the case
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0 0.5
a

0

-1 -05
FIG. 5. Plot ofp(a), a=e T, «=1/2 in all cases, witta

<0 denoting alternating persistence. or 0 the curves are, from
e bottom: random walk@=) to O(a*°), and constrained Pasle

t
05:24, B=6, =3, B=2, B=3/2, B=1 to O(a®). Fora<O0 the

ordering is reversed, the random walk@¥a*®) and the random
accelerations ar®(a®). The Padecurves shown are the averages
of the diagonal Padéfor odd orders and the four nearest off-
diagonal Padg although these do not differ visibfgxcept for the
plots of (a) for a larger than about 0.99, see Fig. ®nly Pads

that do not have spurious poles on the real axis in the range

—0.25<a<1.25 are considered. Note that f@ finite, p(—1)
~0.108 while for the random walk(—1)=0.280... . Asf—x,
the turn down occurs closer @=—1 and is sharper, and so for

=1/2, p=3/2. As for the random walk case, the series havez_g 24, the Padean no longer “predict” the curves and in these

not yet converged fom—1. Since we now have a four-

two cases only the raw series are plotted.

dimensional matrix, the problem is more apparent since we

have only been able to reach(a®). We extend the curves
by use of PadeApproximants[38], which relies onp(a)
being “smooth,” and so do not work for the random walk for
a—1 because of the/AT cusp. Also,(see Fig. 5, the Pade
method does not work in the alternating case for lagye
because of the sharp downturn fr — 1. Nevertheless, in

the remaining cases it significantly extends the valid range

for p, and we use this for plotting the remaining alternating
persistence cases. However, sinte 3In(p)/In(a), whena
—1 the 1/Inf) accentuates the slight error jn To remedy
this, we add an extra term to the Papelynomial in the
numerator(or denominator to enforce the constraini(1)

=1. Figure 5 shows plots of the eigenvalue against

exp(—AT/2) for «=1/2 and various values @. Also plot-
ted are the alternating persistence results.

Surprisingly, for the continuum limit of alternating persis-
tencep-40. Indeed,p~0.108 for all @, B. Previously, we
had thought[30] that nonzerop could only occur for a
“rough” process(which has an infinite number of crossings

in finite time). The reason for these results is as follows. For

alternating persistence (and similarlyVV) must cross zero
inside a timeAT so forAT—0, X,V must both tend to zero.

As a result, Eqs(48) and (49) becomeV(T) = 5(T), X(T)
=V(T), or equivalentlyX= 7(T), thus removing ther, 3

0.5

03 r

<

02 r

0.1

0.5

0
-0.5
a

FIG. 6. Plot of 8(a)[ = 3In(p)/In(a)], a=e~**T, «=1/2 in all
cases, where is the same as for Fig. &<0 denotes alternating
persistence. Foa>0 the curves are, from the top: random walk
(B=w), B=24,B=6, B=3, =2, =3/2, B=1. Fora<O0, the
order is reversed. Note that the random walk series has not con-

dependence. This latter equation is invariant under changegrged fora—1, but is 1/2 in this limit.
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in T and henceAT, provided we rescal&. It, therefore,
gives a nonzere even forAT—0. This implies that any
process whose equation (sr becomes, foAT—0) time-
scale invariant hag,;;#0 for AT—0. For example, the dif-
fusion equation from random initial conditions is equivalent
to the n—oo limit of the processd"x/dt"= »(t) and will
reduce tod"X/dT"= 5(T) for AT—0.

We can compare our results to exact results for two lim-

iting cases. ForAT—x, as before we expecp= 3

+ L arcsiiC(AT)], where for this case the normalized cor-
relation function is

IBe—aAT_ ae—,BAT
C(AT)= B a (62
Hence,
1
p= 1/2+ ; f e*aAT_i_ O(e72aAT,e*BAT)

for B>«a. For a/ B—0, the normalized correlator, E(G2),
becomesC(AT)=exp(—aAT), the random walk correlator.
In fact, Eq.(50) reduces to the random walk equatiofs=
—aX+ n(T), if the limit << is taken after the change of
variablesX= y/B\a, T=7/a, when it becomes clear that
the inertial term is negligible foe/3—0. For a/ B<1, we
can also solve fol in the continuum limit, AT=0, by ex-
panding around the Markov proceXs: — aX+ 7(T) to first
order in+/a/B [11,12,38. The correlatoiC(T) can be writ-
ten as

C(T)=e “T+ (e @T—e AT, (63

B—«

Using the standard perturbation expansj86] for # for a
process with correlatoB(T)=e T+ ea(T), with e<1,

20 a (= a(T)
0= “(1_73—afo dT(l_e_ZaT)slz) +0(€),
(64)
gives
2 « B B—«a
0=a(1—\/—;ﬁ_arz Fw}) (65)
To first order inya/ B, therefore,
ol V]l
0=a| 1— ; E +0 ,E . (66)

For a=1/2, B=24, this givesd=0.442+ O(al/B), which is
consistent with the value af=0.429 obtained from the con-
strained Pade

The series fop(a) in powers ofa agree with those found
using the correlator expansi¢84] for the various values of
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i
0.75
P

0.5

FIG. 7. The eigenfunction for=1/2, 3=3/2, anda=0.1.

As before, the eigenfunctiofP..(X,V) can be recon-
structed from the eigenvector corresponding to the largest
eigenvalue using EqA4). The result is displayed in Fig. 7
for the standard case=1/2 andB=3/2.

VI. UNDERDAMPED NOISY SIMPLE-HARMONIC
OSCILLATOR

We now consider the underdamped case of the noisy
simple-harmonic oscillatofSHO). The persistence exponent
for this case is not known even in the continuum limit. Fur-
thermore the correlator of the process is oscillatory, which to
our knowledge has not yet been studied. From(&@). it can
be seen that the complex values

a=ytio,
(67)

correspond to an underdamped oscillator. The corresponding
equation of motion is

:8:7_iw!

X+ 2yX+(y?+ 0?)X=5(T), (69)
where the angular frequency of oscillatioruisand the decay
rate is+y. Substitutinge and 8 into the correlator, Eq(62),
gives

C(T)=exp — yT) cos(wT)Jr%sin(wT) . (69

Sincea and B are complex, we choose to study this pro-
cess using the correlator expansion abbiit—oo, that was
developed in Ref[34]. We merely substitute the correlator,
Eq. (69), into our 14th order series expansion f{AT) and
hence findd, . Note that for the random walk and random-
acceleration problems above, 14th order corresponds to order
a'%. As before,0p= yf(w/y) so we choose to keep=1/2
and varyw. Figure 8 shows plots of againsta for various

a and B tried. This was used as a powerful check of thevalues ofw. Also shown are the random walk and persis-

accuracy of the correlator expansion.

tence and alternating persistence exponents, which are nu-
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' ' ' E This of course does not imply that;(AT) is monotonic.

2 r e Taking the limit m—o, and assuming thatp(AT) is
4 “::16 smooth forAT—0, we get the result that
4 W=

1+ 7 L=t T 0=0p(AT) VAT. (71

This provides a lower bound oé for when our largeAT

0r 1 expansions do not converge up to the continuum limit. We
can use this to see that, for=1/2, §=1.22, 2.60, 4.49, and
- 7.19,w=2, 4, 8, and 16, respectively.

1+ b

In(8,)

_ M- VIl. CONCLUSION

=2 i In this paper we have extended our earlier treatment of the
discrete persistence exponent for the random walk with an

3 , , , absorbing boundary at the origi80] to the two-dimensional
0 0.25 0.5 0.75 1 random walk with absorbing boundaries on a wedge, and the

a random-acceleration process with an absorbing boundary at
the origin. While the latter is perhaps the simplest

FIG. 8. Plots of the underdamped noisy SHO persistence eXP ontinuous-time non-Markovian process, both the processes
nent againsa=e 272, calculated using the correlator expansion P ' P

for the casey = 1/2 with w=2,4,8,16 from the lower right, respec- discussed.in this work have the simpl_ifying fegture t.hat they
tively. Also plotted are the discrete random walkwest-dashed can be written as a Markov process in tWO, dlmenS|on§. We
curve and alternating discrete random walkpper-dashed curye have sh_own that, in both processes, the discrete persistence
that are equal to the oscillating exponents feAT=2ms and  Probability aftern measurement®,(x), for a process start-

wAT=(2m+ 1), respectively, wheren is an integer. Note that iNg atx, has the asymptotic forr@,(x)~p"q(x), wherep
the series have not converged o 1. andq(x) are the largest eigenvalue and corresponding eigen-

function of a certain eigenvalue integral equation. They have
merically identical to the underdamped SHO wheT ~ been evaluated to high precision by converting the integral
=2m7 and wAT=(2m+ 1), respectively, withm as an  €quation into a matrix eigenvalue problem, from which high-
integer. Note that, as before, the series have not convergédder series expansions in powers af exp(—uAT) have
sufficiently for smallAT. been obtained, wher®T is a uniform measurement interval

The (at first sight surprisingidentity of the random walk for a Gaussian stationary proce€3SP. The random walk
and underdamped SHO persistence exponents for certain v@d random-acceleration problems have been mapped onto
ues of AT is interesting, and the explanation rather simple:GSPs in logarithmic tim&=Int, and for thes¢and similay
Since these are Gaussian processes of zero mean, their cd?focesses the calculations presented here apply to the case of
elators possess all the information about them. When studyneasurements uniformly spacedin
ing discrete-sampling persistence, we are in effect studying a The case of alternating persistence, in which the measured
sequence of random variable$; ,X,,Xs, . .. X,, whose values of the stochastic varlab!e take positive and negative
correlator we know sincéX,X,)=C(|p—q|AT). Any pro- v_alue; alternately, has_ been discussed using a formal con-
cesses that have identical correlators forGmAT), min-  tinuation ofa to negative values. The cage>1 (or a<
teger, will have identical discrete persistence exponents for 1 for alternating persistengecorresponds, for a GSP, to
this value of AT. From Eq. (69) it can be seen that motion in an unstable potential. Far>1 there is a nonzero
for wAT=2mm the correlator reduces to the random Probability g(x) that the process, starting &t-0, is never
walk correlator, exp{yAT), hence, the agreement of the measured to be negative, and we have shown how to calcu-
persistence exponents. FasAT=(2m+1)w, C(mAT) late it, with explicit resultgsee, e.g., Fig 3for the Ornstein-
—exp(=yAT)(—1)™ that is, the correlator alternates in sign. Uhlenbeck process. _ _
This corresponds to alternating persistence sK¢mAT) For the random-acceleration process, the cor"respondlng
has in effect changed sign fon odd. GSP is a noisy, overdamped harmonic oscillaXot («

At this point we make a general comment about the varia-+ g)X+ a X = 5(T) with a=1/2 andB=3/2. This process
tion of discrete persistence exponents wifi. Consider a s clearly of interest for other values of and 8, since even
process for which we know(AT) for some range oAT,  the value ofg in the continuum limit AT—0) is not known
e.g., from using the matrix method or correlator expansiorexactly except for3=3a. We have obtained a perturbative
for smallAT. If we changeAT to AT/m, minteger, we will  result for the continuum limit in the limin<B. We have
sample at exactly the same times as before, plus the intermatso investigated the underdamped case, corresponding to
diate times. Hence, some paths that were persistent befotemplexa andB, and shown that for discrete measurements
will be excluded, and so the asymptotic survival probabilitywith time stepAT equal to an integer number of oscillation
decreases. Thus, periods, the persistence properties are identical to those of a

random walk, while for an odd half-integer number one re-
Op(AT/m)=6p(AT). (70 covers the alternating persistence of a random walk.
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The methods presented here become increasingly un- 1 o o
wieldy as the order of the stochastic differential equation Pf(X,v):;VDeth dYJ duf(y,u)
increases. Recently, a power series approach has been devel- 0 o
oped in which the eigenvalyeis expanded in powers of the xexF{ayyszr ayyu+ ayuu?]
correlatorC(kAT) evaluated at integer multiplds of the
time step between measurements, with the maximum value

of k depending on the order of the expansi84]. While not X 2 T(ByXy+a,yvy+axXxut a,vu)"
as powerful as the matrix method for systems described by
low-order stochastic differential equations, the series ap- X exp] au X2+ ay,Xv +a,,v?]. (A2)

proach has the advantage that it can be applied to any GSP,
including those(such as diffusion from random initial con- Letting
ditions) that cannot be described by a differential equation of
finite order. N e ¢ d

The “simple” persistence problem discussed here deals o= fo dxj_xdvf(x,v)x v

with the probability of detecting no zero crossingnmmea- 5 )
surements. The statistics of the number of zero crossings, X explayyx“+ayxv+ayw”] (A3)

e., the probability to observen crossings inn measure-
ments, is also of interest. Results obtained by applying bot
the methods of this paper and the series expansion approach

|gives

o) e} e f
of Ref.[34] will be reported in a separate publication. f _ vDetM D le e+f z Z
P (er)_ |
T =0 f=0 (e+f) € /=00
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APPENDIX A: CALCULATION OF

RANDOM-ACCELERATION MATRIX EQUATION Multiplying through byx‘v® and integrating ovex>0 and

Let thexv coefficient in the exponent ke, etc., then over allv, gives

~ 1
Axx= —<V2>, Plc,dZ;VDetMGc,d,e,fle,fv (A5)
a, =2(XV), where
~ f
auu=_<x2>a _ 1 e+f) °
Gc’d’e’f_(e+f)! e rZO 520
a,y=—B*V?),
A—B X s ai;ralr;ya;;saiuDe—r+f—s+c,r+s+d (A6)
=—-2B——(V?)+2AB(XV),
== 2B5— (V) +2AB(XV) o
2/%2 _ 2~2 A-B o _ |- - a b 2 2
w=—A <X >— B__CY <V >+2AE<XV>, Da,b_ o dx 7°Cdv x%vP exd — (Av— Bxv +Cx9)],
(A7)
—9R/\2
By =2B(V7), giving
a,y=—2B(XV), [%2] b @y B\
AlB b—2t)( 2A
Xuzzmﬁ/z)—ZA(XV), 52 _(a+b;2t+1)
- — I
- x| C i (2t—1)1
— Y2\ _ Y\
a, =2A(X?) 2I8_a<XV>. (A1) atb—2t+1
xT — (A8)
Expanding the exponent of E¢G9) in powers of terms that
mix (x,v) with (y,u), we get, where[ b/2] indicates the integer part &f2 and
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A=—a,,—ayy, (A9) vDetM (= » ”

" pf(x,v)= fdyf duf(—y,—u 2, —
B=ay,+ay,, (A10) ™ 0 — a=o0 N!
C=—ap-a,,. (A1) X exd ay,y?+ayuy U+ ay,u?]

_ X (—anXy—a,, vy —a Xu—a,,pu)"
Thus the problem has been reduced to computing the larg- e Y - !

est eigenvalue of aN X N Nx N operator. As in the wedge X exXfl X2+ Ay, Xv +a,,v7]. (A12)

caseGe g, decouples intds . q) (e, - FOr alternating per-

sistence, the range of integration owein Eq. (A2) should Due to the symmetry of the systeifi(y,u)=f(—y,—u), so
be from —o to 0. Substitutingy— —y andu— —u, and  changinga;;— —a;;(i=x,v,j=Yy,u) in the matrix method
changing the limits of integration gives gives alternating persistence.

APPENDIX B: SERIES FOR p FOR RANDOM WALK AND RANDOM ACCELERATION
The coefficients for the random walk are
p(a)=0.500000-0.318 31@*+0.115 6682+ 0.021 443+ 0.015 65h*+ 0.015 762°+ 0.000 05@°— 0.003 32@’
+0.007 5928+ 0.007 582°— 0.004 3721°— 0.005 964+ 0.004 84@'%+ 0.007 912&'*— 0.001 29@'*
—0.006 184°—0.000 36@'6+ 0.004 2057+ 0.001 46a*¥—0.000 75a%+ 0.000 9822°+ 0.000 38%%*
—0.003 2722%—0.002 4083+ 0.003 3542+ 0.004 972%°—0.000 0722°— 0.003 73%%'—0.001 78G%°
+0.000 65@2°+ 0.000 27@3°+ 0.000 41331+ 0.002 18832+ 0.001 62923~ 0.001 60@°*— 0.002 448>
+0.000 21336+ 0.001 454%7— 0.000 508%—0.001 372°°+ 0.000 74@*°+ 0.002 125*+ 0.000 74&*?
—0.000 602“3—0.000 37@*—0.000 732%°— 0.001 956“°— 0.001 143*"+ 0.001 78@*®+ 0.002 824*°+ O(a*?).
The coefficients for the random-acceleration are
p(a)=0.500000- 0.477 464+ 0.021 519+ 0.000 314>+ 0.035 88a*— 0.063 298°+ 0.029 548&°+ 0.032 884’
—0.0614728+0.020 79@°+0.030 972'°-0.039 234!+ 0.016 10&%+0.012 4021~ 0.035 066*
+0.021 39G'°+0.020 2746 0.027 4221+ 0.002 0068+ 0.005 64@*°— 0.009 5532°+ 0.018 303!
+0.002 0992~ 0.023 96@%*+ 0.007 07 H%*+ 0.012 40%2°+ O(a%%).

The coefficients in both series have been truncated to six decimal places for brevity. In the plots presented in the paper,
sufficient precision has been retained in the coefficients to ensure the accuracy of the plots and of any quoted values
for p and 6.
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