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Persistence of a continuous stochastic process with discrete-time sampling: Non-Markov process
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We consider the problem of ‘‘discrete-time persistence,’’ which deals with the zero crossings of a continuous
stochastic processX(T) measured at discrete timesT5nDT. For a Gaussian stationary process the persistence
~no crossing! probability decays as exp(2uDT)5@r(a)#n for large n, wherea5exp(2DT/2) and the discrete
persistence exponentuD is given byuD5(ln r)/(2 ln a). Using the ‘‘independent interval approximation,’’ we
show howuD varies withDT for small DT and conclude that experimental measurements of persistence for
smooth processes, such as diffusion, are less sensitive to the effects of discrete sampling than measurements of
a randomly accelerated particle or random walker. We extend the matrix method developed by us previously
@Phys. Rev. E64, 015101~R! ~2001!# to determiner(a) for a two-dimensional random walk and the one-
dimensional random-acceleration problem. We also consider ‘‘alternating persistence,’’ which corresponds to
a,0, and calculater(a) for this case.
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I. INTRODUCTION

Persistence of a continuous stochastic variable has
cently been a subject of considerable interest among b
theoreticians and experimentalists. Systems studied inc
randomly driven single degrees of freedom@1–4#, simple
diffusion from random initial conditions@5,6#, models of
phase separation@7–17#, fluctuating interfaces@18–20#, and
reaction-diffusion processes@21–24#. For a recent review se
Ref. @25#. Persistence is the probabilityP(t) that a fluctuat-
ing nonequilibrium field, at a particular space point, has
crossed a certain threshold~usually its mean value! up to
time t. In most systems studied, scale invariance implies
for large t, P exhibits a power-law decayP(t);t2u, where
the persistence exponentu is nontrivial due to the depen
dence ofP(t) on the whole history of the system. Exper
ments have recently measuredu for the coarsening dynamic
of breath figures@26#, liquid crystals@27#, soap bubbles@28#,
and diffusion of Xe gas in one dimension@29#.

In this paper we consider the following problem: in a
experimental~or numerical! measurement ofu, the stochas-
tic variable studied,x(t), will have to be sampled discretely
It is, therefore, possible thatx(t) could cross and then re
cross its threshold between samplings, resulting in a fa
positive classification of the persistence ofx(t). If the sam-
pling is logarithmically spaced in time~as was the case in
Ref. @29#!, then such undetected crossings will make
measured persistence exponent smaller than theory pre
~while if the sampling is uniform in real time only the pre
actor is changed!. This problem has been studied in Ref.@30#
for the case of a random walker in one dimension, a sim
Markovian, ‘‘rough’’ ~i.e., with a fractal distribution of cross
ings @31#! process. Here we extend that work to conside
simple, nonMarkovian, ‘‘smooth’’ process: a randomly acc
erated particle. Since most of the more complex proces
studied experimentally are ‘‘smooth,’’ this paper is a st
towards understanding the effect discrete sampling has
those measured persistence exponents.

There is yet another motivation for studying the pers
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tence of a discrete sequence as opposed to that of a con
ous process. It turns out that many continuous processe
nature are stationary under translations of timeonly by an
integer multiple of a basic period~which can be chosen to b
unity without any loss of generality!. For example, the
weather records have this property due to seasonal re
tions. It has recently been shown@32# that for a wide class of
such processes, the continuous time persistenceP(t) is the
same as the persistenceP(n) of the corresponding discret
sequence resulting from the measurement of the continu
data only at discrete integer points. In general, the calc
tion of the persistence of a discrete sequence is much ha
than that of a continuous process, except in special ca
whereP(n) can be computed exactly@32,33#. The tools that
have been developed over the last decade for studying
persistence of a continuous process are often not easily
tendable to the case of discrete sequences and one nee
invoke different techniques, some of which are presented
this paper.

The layout of this paper is as follows. In Sec. II we u
the independent interval approximation~IIA ! @5,6# to find the
first correction tou for smallDT, whereDT is the separation
of samplings in logarithmic time (T5 ln t). This gives us
some indication of how significant the effect of discrete sa
pling is. For example, for the random walkuD2u}2ADT
and so the discrete exponentuD and its continuum limitu
begin to deviate markedly as soon asDT.0. For the
random-acceleration problem, one findsuD2u}2DT, a
weaker dependence onDT, while for the diffusion equation
from random initial conditions,uD2u}2(DT)2, so the ef-
fect of discrete sampling for smallDT is much less signifi-
cant in this case. These three systems display an increa
‘‘smoothness’’ of the underlying process, a concept we w
expand upon below.

In Sec. III we illustrate our general method for solvin
low-dimensional discrete persistence problems by consi
ing the case of a random walker in one dimension,ẋ(t)
5h(t), whereh(t) is Gaussian white noise. A brief accou
©2002 The American Physical Society02-1
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EHRHARDT, BRAY, AND MAJUMDAR PHYSICAL REVIEW E 65 041102
of this work was given in Ref.@30#. We map the problem to
a Gaussian stationary process~GSP! in the variable X
5x/At by transforming to logarithmic time. In the new var
ables, the random walk is represented by an Ornst
Uhlenbeck process. We repose this problem in terms o
backward Fokker-Plank equation~BFPE! and give the solu-
tion for the continuum case where the persistence expo
has the well-known valueu51/2. We then formulate the
discrete persistence problem in terms of an eigenvalue i
gral equation. Employing a power series expansion of
integrand reduces the problem to a matrix eigenvalue eq
tion, whose largest eigenvalue gives us the persistence e
nent measured by discrete sampling. The concept of alter
ing persistence, in which the consecutive measured value
X lie on alternate sides of the threshold value is also in
duced anduD is calculated for this case.

Having demonstrated the matrix method on a single v
able problem, we then apply it to two-variable problems:
two-dimensional random walkẋ(t)5h(t), in a wedge ge-
ometry~Sec. IV!, and a randomly accelerated particle in o
dimension,ẍ(t)5h(t), which is a simple example of a non
Markovian process~Sec. V!. Surprisingly, for alternating
persistence in the continuum limit (DT50) the asymptotic
probability of surviving one further sampling,r, is nonzero,
a phenomenon contrary to our earlier suggestion@30# that
this should only occur for ‘‘rough’’ processes. Using scal
variables and logarithmic time, the random-accelerat
problem maps onto a damped simple-harmonic oscilla
which we study for the overdamped case using the ma
method, findinguD as a function ofDT. Using the results of
a correlator expansion developed in Ref.@34# we also study
the underdamped case, an example for which the correlat
oscillatory ~Sec. VI!. We show that when the time interva
DT between measurements is equal to the period of the
cillation, the problem is identical to the Ornstein-Uhlenbe
process studied in Sec. III, while forDT equal to one-half of
a period the problem reduces to that of alternating per
tence in the Ornstein-Uhlenbeck process. The paper c
cludes with a summary of the results.

II. SMALL DT CORRECTION TO u

The independent interval approximation@5,6# uses the as-
sumption that the intervals between zero crossings of a G
are independently distributed. Although this assumption
not valid for most processes, it nevertheless gives rem
ably accurate estimates foru in many cases. Here we use th
same assumption to find the first correction tou due to dis-
crete sampling with a spacing in logarithmic time ofDT for
DT small.

As DT is increased from zero, the first correction tou
comes from paths that are always positive apart from
undetected double crossing between consecutive sa
times. Let the probability of one such double crossing occ
ring in the intervalT5nDT be Pdble(n,DT). Then, for T
large, the probabilityPD(T) that the stochastic variable i
positive at alln samplings is given, to lowest order inDT, by

PD~T!5P0~T!1Pdble~n,DT!, ~1!
04110
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whereP0(T) is the continuous-time persistence probabili
given byP0(T);e2uT for T large, andPdble(n,DT) is given
by

Pdble~n,DT!}ne2unDTE
0

DT

dT1E
T1

DT

dT2P1~T22T1!,

~2!

where P1(T) is the probability distribution of the interva
size, and we have assumed that the durations of diffe
intervals are statistically independent. The latter assump
is precisely the IIA. It is clear from Eq.~2! that, to leading
order inDT, we only require the form ofP1(T) in the limit
T→0. The functionP1(T) can be found using the IIA and
for the processes currently under consideration—the rand
walk, random acceleration, and diffusion from random init
conditions—the small-T results areP1(T)}1/AT, 1, andT,
respectively. All three cases are incorporated in the gen
form P1(T)}Ta, with a521/2, 0, and 1, respectively. Us
ing this form in Eq.~2! gives

PD~T!5P0~T!1gnDTa12e2uT, ~3!

where g is some constant. SinceT5nDT and P0(T)
;e2uT, we have

PD~T!5Ae2uT~11B TDTa11!, ~4!

whereA, B are constants, and so, to lowest order inDT,

PD~T!5Ae2uTeB TDTa11
. ~5!

SincePD(T);e2uDT, we obtain

uD5u2BDTa11. ~6!

For the random walk, random acceleration, and diffus
from random initial conditions,uD2u}2ADT, 2DT, and
2(DT)2, respectively. From this we expect that the discr
sampling is important as soon asDT is nonzero for the ran-
dom walk, this being related to the fact thatP1(T)→` for
T→0, i.e., that the distribution of crossings is fractal a
hence this process is ‘‘rough’’@31#. The persistence exponen
for the random-acceleration process is linear inDT and thus
we expect it to be less affected by the discrete sampling
small DT . In Secs. III and IV these expectations will b
confirmed using the matrix method perturbative expansion
a5e2DT/2 about a50. Finally, for diffusion from random
initial conditions, the (DT)2 dependence indicates that di
crete sampling will be relatively unimportant for smallDT.
Finally we note that, although Eq.~6! has been derived usin
the IIA, we expect it to be valid quite generally. In particula
thea52 result forP1(T) has been proved correct by Zeita
@37#, the IIA even giving the correct coefficient.

III. RANDOM WALK IN ONE DIMENSION

Let us consider the simple case of a random walker in
dimension,

ẋ~ t !5h~ t !, ~7!
2-2
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PERSISTENCE OF A CONTINUOUS STOCHASTIC . . . PHYSICAL REVIEW E 65 041102
where h(t) is Gaussian white noise with zero mean a
^h(t)h(t8)&52Dd(t2t8). For convenience we map thi
process, which is nonstationary in time, to a Gaussian
tionary process by defining new space and time variableX
5x/At andT5 ln t. Equation~7! then reads

dX

dT
52mX~T!1h~T!, ~8!

where^h(T)h(T8)&52Dd(T2T8) andm51/2 for the ran-
dom walker, although other values ofm can be considered
This Ornstein-Uhlenbeck problem can be more usefu
solved using the BFPE. LetQ(X,T) be the probability that
the random walker, starting fromX at time T50, does not
cross the origin (X50) up to timeT. Then from Eq.~8! it
can be shown thatQ(X,T) satisfies

]Q/]T5D]2Q/]X22mX]Q/]X, ~9!

with initial condition Q(X,0)51 for all X.0 and boundary
conditionsQ(0,T)50 andQ(`,T)51. The solution is

Q~X,T!5erfF e2mT

A2D8~12e22mT!
XG , ~10!

where erf(x) is the error function andD85D/m. For largeT
~and positive m), P(T);Xe2mT, which corresponds to
P(t);t2u in real time, withu5m.

We now consider discrete persistence, i.e., the probab
Qn(X) that starting atX our field/variable is positive at al
the discrete sample timesT15DT, T252DT, . . . ,Tn
5nDT. This is relevant for experimental or numerical det
minations ofu since in practice one will have to sample on
at discrete points. In Ref.@29#, for example, the sampling i
done logarithmically in real time~which corresponds to sam
pling uniformly in logarithmic time!. Note thatuD will, in
general, be smaller than the continuum valueu since any
even number of crossings between samplings will go un
ticed. One can write down a recurrence relation forQn(X),

Qn11~X!5E
0

`

dYQn~Y!P~Y,DTuX,0!, ~11!

where P(Y,DTuX,0) is the Greens function, i.e., the pro
ability that a particle starting atX at time zero will be atY at
time DT. For a Gaussian process,P(Y,DTuX,0) can be
found from the mean and variance ofX(T),

P~Y,DTuX,0!5
1

A2pD8~12a2!
expF2

~Y2aX!2

2D8~12a2!
G ,

~12!

wherea5exp(2mDT). This gives us the discrete analogue
the BFPE~9!,
04110
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Qn11~X!5E
0

`

dY Qn~Y!
1

A2pD8~12a2!

3expF2
~Y2aX!2

2D8~12a2!
G , ~13!

with the continuum equation being recovered in the lim
DT→0.

Making the change of variablesx5X/AD8(12a2), y
5Y/AD8(12a2), andQn(X)5Qn8(x) gives

Qn118 ~x!5
1

A2p
E

0

`

dy Qn8~y!exp@2~y2ax!2/2#. ~14!

At late times, withm.0, we expectQn118 (x)5rQn8(x) in
analogy with the continuous case whereP(T1DT)
5P(T)e2uDT so r5e2uDDT. We, therefore, expect that, fo
largen, Qn(x)→rnq(x). Substituting this into Eq.~14! gives
an eigenvalue integral equation forq(x)

rq~x!5
1

A2p
E

0

`

dy q~y!exp@2~y2ax!2/2#, ~15!

with an eigenvaluer(a) that depends continuously ona.
Equation~15! has an infinite number of eigenvalues, but
late times only the largest will remain since( ir i

n'rmax
n for

largen ~there is no other eigenvalue contiguous to the larg
eigenvalue!. By symmetrizing the kernel in Eq.~15!, one can
use the variational method to find a rigorous lower bound
r @30#. This method cannot be applied to the rando
acceleration problem, however, since the kernel canno
symmetrized. ForDT→`, correlations between thenth and
(n12)th samplings are negligible, so

Pn'@Prob ~ two consecutive points have the same sign!#n

~16!

5S 1

2
1

1

2
^sgn@X~0!#sgn@X~DT!#& D n

~17!

5S 1

2
1

1

2

2

p
arcsin@C~DT!# D n

, ~18!

whereC(T22T1)5exp@2m(T22T1)# is the normalized auto-
correlation function ofX(T), i.e.,C(T)5^X(T)X(0)&/^X2&.
Hence, for largeDT,

r5
1

2
1

a

p
1•••. ~19!

Equation ~15! can also be solved perturbatively by e
panding the exp(axy) term as a power series ina

rq~x!5
1

A2p
E

0

`

dyq~y!e2y2/2e2a2x2/2(
m50

`
~axy!m

m!
.

~20!

Defining
2-3
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bm5
am/2

Am!
E

0

`

dy q~y!yme2y2/2 ~21!

gives

rq~x!5
1

A2p
e2a2x2/2(

m50

`
bm

Am!
~Aax!m. ~22!

Multiplying through bye2x2/2xn and integrating overx.0
gives

rbn5 (
m50

`

Anmbm ~23!

where

Anm5
1

A4p~11a2!
S 2a

11a2D (n1m)/2G@~n1m11!/2#

An!m!
.

~24!

By this method, the eigenvalue integral equation~15! has
been converted to the eigenvalue matrix equation~23!, and
the problem reduces to computing the largest eigenvalu
anN3N submatrix whose (n,m)th elements decrease exp
nentially in n1m. In @30# we determinedr numerically to
one part in 1012. We have also algebraically foundrmax as a
series expansion ina, the first four terms being

r5
1

2
1

a

p
1

p22

p2 a21
48236p17p2

6p3 a31•••. ~25!

The coefficients up to ordera49 are given in Appendix B.
For DT→0, a→1, and convergence becomes progressiv
slower. However, the variational method still works in th
region.

One may also consider the case of alternating persiste
i.e., the probability thatX(nDT) is positive for every evenn
and negative for every oddn ~or vice versa!. The limit of
integration in Eq.~15! then changes, giving

rq~x!5
1

A2p
E

2`

0

dyq~y!exp@2~y2ax!2/2#. ~26!

Substitutingy→2y, swapping the limits of integration an
usingq(2y)5q(y) ~since the process is symmetric arou
y50) gives

rq~x!5
1

A2p
E

0

`

dyq~y!exp@2~y1ax!2/2#, ~27!

which is identical to Eq.~15!, but with a replaced by2a.
Therefore, replacinga by 2a in the matrix equation~23!
will give the alternating persistence eigenvalueralt . The
caseuau.1 may also be considered, this corresponding
m,0 and hence to an unstable potential in the Ornste
Uhlenbeck process. For the alternating case,a,21, the cal-
culation proceeds as before. In fact, from Eq.~24! it can be
04110
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seen thatr(1/a)5r(a)uau for a,1, so one need only inves
tigate alternating persistence in the range21,a,0. For a
.1 it is possible for the walker to escape to infinity, i.e
qn(x)→” 0 for n→`. The asymptotic limit forq(x) whena
.1 may be found using the matrix method in the followin
way. Sinceq(x)→1 asx→`, it is more convenient to study
a new functionu(x) defined by the relation

q~x!512q~0!E
x

`

u~y!dy, ~28!

whereq(0) is fixed by Eq.~28! with x50. Substitutingq(x)
from Eq. ~28! into Eq. ~15! ~with r51 since we are finding
the stationary state! we find, after some algebra, thatu(x)
satisfies the integral equation

u~x!5
a

A2p
Fe2a2x2/21E

0

`

u~y!exp@2~y2ax!2/2#dyG .
~29!

Note that, unlike Eq.~15!, which determinesq(x) only up to
an overall multiplicative constant, Eq.~29! is an inhomoge-
neous equation that fixesu(x) absolutely, as one expects o
physical grounds.

As before, we expand the factor exp(axy) in Eq. ~29! as a
power series to obtain

u~x!5
a

A2p
e2a2x2/2F11 (

n50

`
anxn

n! E
0

`

dyynu~y!e2y2/2G .

~30!

Multiplying through by xm(am/2/Am!)e2x2/2, integrating
over positivex, and defining

cn5
an/2

An!
E

0

`

dy ynu~y! e2y2/2, ~31!

gives

cn5aFAn01 (
m50

`

AnmcmG , ~32!

whereAnm is our previous matrix given by Eq.~24!, and

u~x!5
a

A2p
e2a2x2/2 F11 (

n50

`
an/2xn

An!
cnG . ~33!

Equation~32! can be solved by matrix inversion

cn5a(
m

~B21!nmAm0 , ~34!

where

Bnm5dnm2aAnm . ~35!

The solution converges rapidly as a function of the sizeN of
the matrix. In practice,N of order a few hundred gives ver
precise results.
2-4



r-

.

as
ir

th

e-
co

n-
n-

l.

le

’’
em,
m

n-
om

se

-
at

.e.,

e

PERSISTENCE OF A CONTINUOUS STOCHASTIC . . . PHYSICAL REVIEW E 65 041102
Figure 1 showsr(a) for both alternating and normal pe
sistence, while Fig. 2 showsu(a). Note that even fora
50.96,uD is significantly below the continuum value of 1/2
We argued in Sec. II that the differenceu(1)2u(a) de-
creases atDT1/2, i.e., as (12a)1/2 for a→1, implying a
square-root cusp ata51 in Fig. 2. Wonget al. @29#, measur-
ing persistence in one-dimensional diffusion of Xe g
sampled logarithmically in time such that in log time the
DT was about 0.24. If the process were a random walk,
would givea;0.9 and a difference betweenuD and the con-
tinuum u of about 20%. For the diffusion equation that d
scribes the experiment, however, the approach to the
tinuum is more rapid~see the discussion in Sec. II!, and
rather accurate results are obtained even forDT50.24 @34#.

FIG. 1. Plot ofr(a) vs a(a5e2mDT), wherea,0 corresponds
to alternating persistence.

FIG. 2. Plot of u(a) vs a(a5e2mDT), where u
5 ln@r(a)#/(2 lnuau) anda,0 corresponds to alternating persistenc
For a→1, the series has not yet converged as the 1/ln(a) term
amplifies the small numerical error inr(a), while for a→21, u
;1/ln(uau).
04110
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In Fig. 3 we show the eigenfunctionq(x) for the casea
50.5. This function was obtained by substituting the eige
vector of the matrixA corresponding to the largest eige
value into Eq.~22!. The asymptotic behavior for largex is
q(x);xn, where n5 ln r/ln a.0.530 661 for a50.5 @30#.
Figure 3 also contains a plot ofq(x), given by Eq.~28!, for
the casea52, which corresponds to an unstable potentia

IV. RANDOM WALK IN TWO DIMENSIONS:
WEDGE GEOMETRY

Having illustrated the perturbative method on a simp
Markovian case for which another approach~the variational
method! is available, we intend to study a simple ‘‘smooth
non-Markovian process, the random-acceleration probl
ẍ5h(t). This process is equivalent to a Markovian proble
in two variablesx(t) and v(t), where v̇5h(t) and ẋ5v.
Before dealing with this problem, we will first consider a
other two-variable Markov process, namely, the rand
walk in two dimensions,ẋ5hx(t), ẏ5hy(t), with ^h i(t)&
50 and^h i(t)h j (t8)&52Dd i j d(t2t8). Using the perturba-
tive approach on this pedagogical problem will clarify its u
on the random-acceleration problem.

Consider a wedge of anglea whose boundaries are ab
sorbing, let our random walker start inside this wedge
radial positionr and anglef, with 0<f<a. Making the
change of variableR5r /At and T5 ln t, converts the prob-
lem into a GSP, as in Sec. III. The corresponding BFPE, i
the two-dimensional analog of Eq.~9!, is

]Q/]T5¹2Q2mR]Q/]R, ~36!

wherem51/2 for the random walk, though we will treatm
as arbitrary, andQ(R,f,T) is the survival probability of the
particle at timeT given that it started at (R,f). The initial
condition isQ(R,f,0)51 for R.0 and 0,f,a, while the
boundary conditions areQ(R,0,T)50, Q(R,a,T)50,
Q(0,f,T)50, andQ(`,f,T)51 for 0,f,a. The solu-

.

FIG. 3. Plot of eigenfunctionsq(x) for a50.5 ~lower curve! and
a52.0 ~upper curve, abscissa55x).
2-5
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EHRHARDT, BRAY, AND MAJUMDAR PHYSICAL REVIEW E 65 041102
tion can be obtained using separation of variables.
asymptotic form forT→` at fixedR andf is

Q~R,f,T!}Rp/a sin~pf/a!exp~2mpT/a!, ~37!

giving u5mp/a. Now consider the discrete persistence. T
analog of Eq.~15! is

rq~r !5
1

2pE dr 8q~r 8!exp@2~r 82ar !2/2#, ~38!

wherea5exp(2mDT) as before,r5(12a2)21/2R, and the
integration is over the wedge. Note that fora5p one can do
the integration overx and recover the one-dimensional resu
In polar coordinates, Eq.~38! becomes

rq~r ,f!5
1

2pE0

`

r 8dr8E
0

a

df8q~r 8,f8!exp@2$r 821a2r 2

22arr 8cos~f2f8!%/2#. ~39!

As before, we expand the exponential term containing
mixed terms

exp@arr 8cos~f2f8!#

5 (
m8,n8

am81n8~rr 8!m81n8@cos~f!cos~f8!#m8

3@sin~f!sin~f8!#n8/@m8!n8! #, ~40!

and define

bm8n85@a(m81n8)/2/Am8!n8! #E
0

a

df8

3E
0

`

dr8 r 8m81n811e2r 82/2@cosm8~f8!sinn8~f8!#

3q~r 8,f8!, ~41!

giving

rq~r ,f!5@e2a2r 2/2/~2p!# (
m8,n8

r m81n8a(m81n8)/2

3@cosm8~f!sinn8~f!#bm8n8 /Am8!n8!.

~42!

Multiplying throughout by

~a(m1n)/2/Am!n! !r m1n11e2r 2/2 cosm~f!sinn~f!, ~43!

and integrating over the wedge, gives

rbmn5( Amn,m8n8bm8n8 . ~44!

Note that, by regardingmn as a single index, we can trea
Amn,m8n8 as a conventional matrix when solving numerica
for r. The matrix elements are
04110
ts
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e

Amn,m8n85
1

4paAm!n!m8!n8!
F 2a

a211G (m1n1m81n812)/2

3G@~m1n1m81n812!/2#Jmn,m8n8 , ~45!

where

Jmn,m8n85E
0

a

df @cos~f!#m1m8@sin~f!#n1n8. ~46!

The problem has been reduced to an eigenvalue ma
equation in four variables that we solve numerically. W
have also foundr as a series expansion ina. As before we
can consider alternating persistence, i.e., the probability
between each sampling the particle alternates betwee
,f,a and p,f,a1p. Figure 4 shows a plot of the
results. The casea5p corresponds to the one-dimension
case whilea50 and a5p trivially give r50 and r51,
respectively.

For DT→`, r→a/2p since the system reequilibrates b
tween samplings. In this limit the functionr(a) is a straight
line from (0,0) to (2p,1).

In the limit a→0, we can expand thef8 integral in Eq.
~39! to first order ina, and setf505f8 to obtain

r

a
q~r ,0!5

1

2pE0

`

r 8dr8q~r 8,0!exp@2~r 821a2r 2

22arr 8!/2#, ~47!

which is identical to the one-dimensional random wa
equation~15! but with r 8dr8 rather than justdr8, and r
replaced byA2pr/a. This gives a matrix equation simila
to that for thed51 case, but withr}a. Also r is a mono-
tonically increasing function ofa as in thed51 random
walk case. The same argument applies to the alternating

FIG. 4. Plot ofra(a) againsta,a50.8 ~top curve!, 0.6,0.4,0.2,
also the alternating cases,a520.2,20.4,20.6,20.8 ~bottom
curve!. The lines are linear interpolations between the discrete d
points.
2-6
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PERSISTENCE OF A CONTINUOUS STOCHASTIC . . . PHYSICAL REVIEW E 65 041102
~wherea→2a). This explains the linear dependence ofr on
a for small a in Fig. 4 and the qualitativea dependence o
the slope ata50.

In the limit a→2p, we expect r→a/2p since the
‘‘‘mean-free path’’ of the particle between samplings is ve
much greater than the width of the absorbing region, so
the particle does not ‘‘‘see’’ the absorbing region and, hen
the probability distribution is not affected by it . Thus do
bling (2p2a) doubles the probability of being absorbe
This is true for anyDT although since the ‘‘mean-free path
}ADT, as a is decreased from 2p the linear relationship
will fail sooner for smallerDT. The same argument applie
for the alternating case, but since there are two alterna
absorbing regions, the probability distribution has more ti
to equilibrate near each absorbing region, thus the linear
pendence breaks down at smallera for a given DT. This
explains the linear dependence neara52p in Fig. 4, and its
breakdown asa decreases.

In the continuum limit (a51) we have the resultu
5mp/a. Sincer5au/m for a51 we getr51 for all a. The
a.0 plots in Fig. 4 are tending to this limit fora→1. In the
alternating continuum limit (a521), the particle canno
survive fora,p, since the two sectors that the particle mu
occupy alternately are disjoint. Fora.p these two sectors
overlap, and it is clear that the alternating persistence p
lem (a521) is equivalent to the usual persistence (a51)
but with a replaced bya2p, i.e., u5pm/(a2p). So r
50 for a,p andr51 for a.p, i.e., we get a step function
at a5p. The a,0 plots are tending to this limit fora→
21.

From Eq.~45! it can be seen thatr(1/a)5a2r(a) for a
,1, which enables one to construct the results fora in the
rangea,21 from those in the range21,a,0. The extra
factor of 1/a compared to thed51 case is due to the phas
space factorrdr rather thandx in the eigenvalue integra
equation.

V. RANDOMLY ACCELERATED PARTICLE

We now consider the nonMarkovian random-accelerat
problem. We first recast the equationẍ5h(t) as the two
first-order equationsv̇5h(t) and ẋ5v. After the change of
variablesV5v/t3/2, X5x/t1/2, T5 ln t these equations be
come

dV/dT52aV1h~T!, ~48!

dX/dT52bX1V, ~49!

with a51/2 andb53/2 for the random-acceleration prob
lem, the process being ‘‘smooth’’ for anya andb. The noise
correlator iŝ h(T)h(T8)&52Dd(T2T8). By eliminatingV,
Eqs.~48! and ~49! can be written as

d2X/dT21~a1b!dX/dT1abX5h~T!, ~50!
04110
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which is the equation for an overdamped simple-harmo
oscillator,a5b corresponding to critical damping. Note th
Eq. ~50! is symmetric undera↔b. Letting T→T/(a1b)
andX→X/(a1b)3/2 gives

Ẍ1Ẋ1
a/b

~11a/b!2 X5h~T!, ~51!

showing thatu5a f (a/b) and so only differing ratios ofa
to b need be considered.

For continuum persistence, Sinai@35# and also Burkhardt
@2# have shown thatu51/4 for the random-acceleratio
problem (a51/2, b53/2). For ratios other thanb53a, no
analytic solutions have been found, except for the casea/b
!1 that we give in this paper.

To derive our usual eigenvalue integral equation, we n
to find the propagatorP(X,V,T1DTuY,U,T), that is, the
probability of going from (Y, U) at timeT to (X, V) at time
T1DT. For a Gaussian process, finding the means and v
ances will completely specify the distribution.

Let X̃5X2^X&,Ṽ5V2^V& and defineA5e2aDT, B
5e2bDT. Then the propagator is

P~X,VuY,U !5
1

2pADetM
expF2

1

2
~X̃,Ṽ!M 21~X̃,Ṽ!G ,

~52!

where

M5S ^X̃2& ^X̃Ṽ&

^X̃Ṽ& ^Ṽ2&
D

and

X̃5X2YB2
U

b2a
~A2B!, ~53!

Ṽ5V2UA, ~54!

^X̃2&5
1

ab~b2a!2~b1a!
@~b2a!22b~b1a!A2

14abAB2a~b1a!B2#, ~55!

^X̃Ṽ&5
1

a~b2a!~b1a!
@~b2a!2~b1a!A212aAB#,

~56!

^Ṽ2&5
1

a
~12A2!, ~57!

and the eigenvalue integral equation is

rP`~X,V!5E
0

`

dYE
2`

`

dUP`~Y,U !P~X,VuY,U !,

~58!

where we are working in the forward variableP`(X,V), the
probability of finding the particle at positionX with velocity
2-7
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EHRHARDT, BRAY, AND MAJUMDAR PHYSICAL REVIEW E 65 041102
V given that it has been found at positiveX at all previous
samplings. Making the change of variable,X/A2 DetM5x,
V/A2 DetM5v, Y/A2 DetM5y, U/A2 DetM5u,
P`(X,V)5 f (x,v) gives

r f ~x,v !5
1

p
ADetME

0

`

dyE
2`

`

du f~y,u!exp@2~ x̃2^Ṽ2&

22x̃ṽ^X̃Ṽ&1 ṽ2^X̃2&!#. ~59!

Substituting

ṽ5v2Au,

x̃5x2yB2u
A2B

b2a
, ~60!

into Eq.~59!, the exponent will contain all pair combination
of x, v, y, u. This kernel is not symmetrizable inx↔y with
v↔u, hence, the variational method is not applicable. E
panding in the four mixed terms,xy, xu, vy, vu, and using
the same method as before, we obtain a matrix equatio
the form

rI c,d5M c,d,e, f I e, f ~61!

~see Appendix A!. As previously, we have foundr numeri-
cally and also as a series expansion ina5exp(2DT/2). The
results forr(a) are presented in Fig. 5, and the correspo
ing results foru(a) in Fig. 6. The coefficients of the expan
sion up to order 25 are given in Appendix B for the casea
51/2, b53/2. As for the random walk case, the series ha
not yet converged fora→1. Since we now have a four
dimensional matrix, the problem is more apparent since
have only been able to reachO(a25). We extend the curves
by use of Pade´ Approximants@38#, which relies onr(a)
being ‘‘smooth,’’ and so do not work for the random walk fo
a→1 because of theADT cusp. Also,~see Fig. 5!, the Pade´
method does not work in the alternating case for largeb
because of the sharp downturn fora→21. Nevertheless, in
the remaining cases it significantly extends the valid ra
for r, and we use this for plotting the remaining alternati
persistence cases. However, sinceu5 1

2 ln(r)/ln(a), when a
→1 the 1/ln(a) accentuates the slight error inr. To remedy
this, we add an extra term to the Pade´ polynomial in the
numerator~or denominator! to enforce the constraintr(1)
51. Figure 5 shows plots of the eigenvalue agai
exp(2DT/2) for a51/2 and various values ofb. Also plot-
ted are the alternating persistence results.

Surprisingly, for the continuum limit of alternating persi
tencer→” 0. Indeed,r'0.108 for alla, b. Previously, we
had thought@30# that nonzeror could only occur for a
‘‘rough’’ process~which has an infinite number of crossing
in finite time!. The reason for these results is as follows. F
alternating persistence,X ~and similarlyV) must cross zero
inside a timeDT so forDT→0, X,V must both tend to zero
As a result, Eqs.~48! and ~49! becomeV̇(T)5h(T), Ẋ(T)
5V(T), or equivalentlyẌ5h(T), thus removing thea, b
dependence. This latter equation is invariant under chan
04110
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FIG. 5. Plot of r(a), a5e2aDT, a51/2 in all cases, witha
,0 denoting alternating persistence. Fora.0 the curves are, from
the bottom: random walk (b5`) to O(a49), and constrained Pade´s
b524, b56, b53, b52, b53/2, b51 to O(a25). For a,0 the
ordering is reversed, the random walk isO(a49) and the random
accelerations areO(a19). The Pade´ curves shown are the average
of the diagonal Pade´ ~for odd orders! and the four nearest off-
diagonal Pade´s, although these do not differ visibly@except for the
plots of u(a) for a larger than about 0.99, see Fig. 6#. Only Pade´s
that do not have spurious poles on the real axis in the ra
20.25,a,1.25 are considered. Note that forb finite, r(21)
'0.108 while for the random walkr(21)50.280... . Asb→`,
the turn down occurs closer toa521 and is sharper, and so fo
b56,24, the Pade´ can no longer ‘‘predict’’ the curves and in thes
two cases only the raw series are plotted.

FIG. 6. Plot ofu(a)@5
1
2 ln(r)/ln(a)#, a5e2aDT, a51/2 in all

cases, wherer is the same as for Fig. 5.a,0 denotes alternating
persistence. Fora.0 the curves are, from the top: random wa
(b5`), b524, b56, b53, b52, b53/2, b51. Fora,0, the
order is reversed. Note that the random walk series has not
verged fora→1, but is 1/2 in this limit.
2-8
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PERSISTENCE OF A CONTINUOUS STOCHASTIC . . . PHYSICAL REVIEW E 65 041102
in T and henceDT, provided we rescaleX. It, therefore,
gives a nonzeror even for DT→0. This implies that any
process whose equation is~or becomes, forDT→0) time-
scale invariant hasraltÞ0 for DT→0. For example, the dif-
fusion equation from random initial conditions is equivale
to the n→` limit of the processdnx/dtn5h(t) and will
reduce todnX/dTn5h(T) for DT→0.

We can compare our results to exact results for two l

iting cases. ForDT→`, as before we expectr5 1
2

1 1
p arcsin@C(DT)#, where for this case the normalized co

relation function is

C~DT!5
be2aDT2ae2bDT

b2a
. ~62!

Hence,

r51/21
1

p

b

b2a
e2aDT1O~e22aDT,e2bDT!

for b.a. For a/b→0, the normalized correlator, Eq.~62!,
becomesC(DT)5exp(2aDT), the random walk correlator
In fact, Eq.~50! reduces to the random walk equation,Ẋ5
2aX1h(T), if the limit a!b is taken after the change o
variablesX5x/bAa, T5t/a, when it becomes clear tha
the inertial term is negligible fora/b→0. For a/b!1, we
can also solve foru in the continuum limit,DT50, by ex-
panding around the Markov processẊ52aX1h(T) to first
order inAa/b @11,12,36#. The correlatorC(T) can be writ-
ten as

C~T!5e2aT1
a

b2a
~e2aT2e2bT!. ~63!

Using the standard perturbation expansion@36# for u for a
process with correlatorC(T)5e2aT1ea(T), with e!1,

u5aS 12
2a

p

a

b2aE0

`

dT
a~T!

~12e22aT!3/2D 1O~e2!,

~64!

gives

u5aS 12
2

Ap

a

b2a
GF b

2aG /GFb2a

2a G D . ~65!

To first order inAa/b, therefore,

u5aS 12A2

p
Aa

b D 1OS a

b D . ~66!

For a51/2, b524, this givesu50.4421O(a/b), which is
consistent with the value ofu50.429 obtained from the con
strained Pade´.

The series forr(a) in powers ofa agree with those found
using the correlator expansion@34# for the various values o
a and b tried. This was used as a powerful check of t
accuracy of the correlator expansion.
04110
t
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As before, the eigenfunctionP`(X,V) can be recon-
structed from the eigenvector corresponding to the larg
eigenvalue using Eq.~A4!. The result is displayed in Fig. 7
for the standard casea51/2 andb53/2.

VI. UNDERDAMPED NOISY SIMPLE-HARMONIC
OSCILLATOR

We now consider the underdamped case of the no
simple-harmonic oscillator~SHO!. The persistence exponen
for this case is not known even in the continuum limit. Fu
thermore the correlator of the process is oscillatory, which
our knowledge has not yet been studied. From Eq.~50! it can
be seen that the complex values

a5g1 iv,

b5g2 iv, ~67!

correspond to an underdamped oscillator. The correspon
equation of motion is

Ẍ12gẊ1~g21v2!X5h~T!, ~68!

where the angular frequency of oscillation isv and the decay
rate isg. Substitutinga andb into the correlator, Eq.~62!,
gives

C~T!5exp~2gT!Fcos~vT!1
g

v
sin~vT!G . ~69!

Sincea andb are complex, we choose to study this pr
cess using the correlator expansion aboutDT→`, that was
developed in Ref.@34#. We merely substitute the correlato
Eq. ~69!, into our 14th order series expansion forr(DT) and
hence finduD . Note that for the random walk and random
acceleration problems above, 14th order corresponds to o
a14. As before,uD5g f (v/g) so we choose to keepg51/2
and varyv. Figure 8 shows plots ofu againsta for various
values ofv. Also shown are the random walk and pers
tence and alternating persistence exponents, which are

FIG. 7. The eigenfunction fora51/2, b53/2, anda50.1.
2-9



rg

v
le
c
d
g

f
t
m
e

n.

ria

io

rm
fo
ity

We

the
an

the
y at
st
ses
ey
We
ence

en-
ve
ral
h-

l

onto

se of

red
tive
con-

o

lcu-

ding

e

g to
nts
n
of a

re-

xp
on
-

t

EHRHARDT, BRAY, AND MAJUMDAR PHYSICAL REVIEW E 65 041102
merically identical to the underdamped SHO whenvDT
52mp and vDT5(2m11)p, respectively, withm as an
integer. Note that, as before, the series have not conve
sufficiently for smallDT.

The ~at first sight surprising! identity of the random walk
and underdamped SHO persistence exponents for certain
ues ofDT is interesting, and the explanation rather simp
Since these are Gaussian processes of zero mean, their
elators possess all the information about them. When stu
ing discrete-sampling persistence, we are in effect studyin
sequence of random variables,X1 ,X2 ,X3 , . . . ,Xn , whose
correlator we know sincêXpXq&5C(up2quDT). Any pro-
cesses that have identical correlators for allC(mDT), m in-
teger, will have identical discrete persistence exponents
this value of DT. From Eq. ~69! it can be seen tha
for vDT52mp the correlator reduces to the rando
walk correlator, exp(2gDT), hence, the agreement of th
persistence exponents. ForvDT5(2m11)p, C(mDT)
5exp(2gDT)(21)m, that is, the correlator alternates in sig
This corresponds to alternating persistence sinceX(mDT)
has in effect changed sign form odd.

At this point we make a general comment about the va
tion of discrete persistence exponents withDT. Consider a
process for which we knowu(DT) for some range ofDT,
e.g., from using the matrix method or correlator expans
for smallDT. If we changeDT to DT/m, m integer, we will
sample at exactly the same times as before, plus the inte
diate times. Hence, some paths that were persistent be
will be excluded, and so the asymptotic survival probabil
decreases. Thus,

uD~DT/m!>uD~DT!. ~70!

FIG. 8. Plots of the underdamped noisy SHO persistence e
nent againsta5e2DT/2, calculated using the correlator expansi
for the casesg51/2 with v52,4,8,16 from the lower right, respec
tively. Also plotted are the discrete random walk~lowest-dashed
curve! and alternating discrete random walk~upper-dashed curve!
that are equal to the oscillating exponents forvDT52mp and
vDT5(2m11)p, respectively, wherem is an integer. Note tha
the series have not converged fora→1.
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This of course does not imply thatuD(DT) is monotonic.
Taking the limit m→`, and assuming thatuD(DT) is
smooth forDT→0, we get the result that

u>uD~DT! ;DT. ~71!

This provides a lower bound onu for when our largeDT
expansions do not converge up to the continuum limit.
can use this to see that, forg51/2, u>1.22, 2.60, 4.49, and
7.19, v52, 4, 8, and 16, respectively.

VII. CONCLUSION

In this paper we have extended our earlier treatment of
discrete persistence exponent for the random walk with
absorbing boundary at the origin@30# to the two-dimensional
random walk with absorbing boundaries on a wedge, and
random-acceleration process with an absorbing boundar
the origin. While the latter is perhaps the simple
continuous-time non-Markovian process, both the proces
discussed in this work have the simplifying feature that th
can be written as a Markov process in two dimensions.
have shown that, in both processes, the discrete persist
probability aftern measurements,Qn(x), for a process start-
ing at x, has the asymptotic formQn(x);rnq(x), wherer
andq(x) are the largest eigenvalue and corresponding eig
function of a certain eigenvalue integral equation. They ha
been evaluated to high precision by converting the integ
equation into a matrix eigenvalue problem, from which hig
order series expansions in powers ofa5exp(2mDT) have
been obtained, whereDT is a uniform measurement interva
for a Gaussian stationary process~GSP!. The random walk
and random-acceleration problems have been mapped
GSPs in logarithmic timeT5 ln t, and for these~and similar!
processes the calculations presented here apply to the ca
measurements uniformly spaced inT.

The case of alternating persistence, in which the measu
values of the stochastic variable take positive and nega
values alternately, has been discussed using a formal
tinuation of a to negative values. The casea.1 ~or a,
21 for alternating persistence!, corresponds, for a GSP, t
motion in an unstable potential. Fora.1 there is a nonzero
probability q(x) that the process, starting atx.0, is never
measured to be negative, and we have shown how to ca
late it, with explicit results~see, e.g., Fig 3! for the Ornstein-
Uhlenbeck process.

For the random-acceleration process, the correspon
GSP is a noisy, overdamped harmonic oscillatorẌ1(a
1b)Ẋ1abX5h(T) with a51/2 andb53/2. This process
is clearly of interest for other values ofa andb, since even
the value ofu in the continuum limit (DT→0) is not known
exactly except forb53a. We have obtained a perturbativ
result for the continuum limit in the limita!b. We have
also investigated the underdamped case, correspondin
complexa andb, and shown that for discrete measureme
with time stepDT equal to an integer number of oscillatio
periods, the persistence properties are identical to those
random walk, while for an odd half-integer number one
covers the alternating persistence of a random walk.

o-
2-10
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PERSISTENCE OF A CONTINUOUS STOCHASTIC . . . PHYSICAL REVIEW E 65 041102
The methods presented here become increasingly
wieldy as the order of the stochastic differential equat
increases. Recently, a power series approach has been d
oped in which the eigenvaluer is expanded in powers of th
correlatorC(kDT) evaluated at integer multiplesk, of the
time step between measurements, with the maximum v
of k depending on the order of the expansion@34#. While not
as powerful as the matrix method for systems described
low-order stochastic differential equations, the series
proach has the advantage that it can be applied to any G
including those~such as diffusion from random initial con
ditions! that cannot be described by a differential equation
finite order.

The ‘‘simple’’ persistence problem discussed here de
with the probability of detecting no zero crossing inn mea-
surements. The statistics of the number of zero crossi
i.e., the probability to observem crossings inn measure-
ments, is also of interest. Results obtained by applying b
the methods of this paper and the series expansion appr
of Ref. @34# will be reported in a separate publication.
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APPENDIX A: CALCULATION OF
RANDOM-ACCELERATION MATRIX EQUATION

Let thexv coefficient in the exponent beaxv, etc., then

axx52^Ṽ2&,

axv52^X̃Ṽ&,

avv52^X̃2&,

ayy52B2^Ṽ2&,

ayu522B
A2B

b2a
^Ṽ2&12AB^X̃Ṽ&,

auu52A2^X̃2&2S A2B

b2a D 2

^Ṽ2&12A
A2B

b2a
^X̃Ṽ&,

axy52B^Ṽ2&,

avy522B^X̃Ṽ&,

axu52
A2B

b2a
^Ṽ2&22A^X̃Ṽ&,

avu52A^X̃2&22
A2B

b2a
^X̃Ṽ&. ~A1!

Expanding the exponent of Eq.~59! in powers of terms tha
mix (x,v) with (y,u), we get,
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r f ~x,v !5
1

p
ADetME

0

`

dyE
2`

`

du f~y,u!

3exp@ayyy
21ayuyu1auuu

2#

3 (
n50

`
1

n!
~axyxy1avyvy1axuxu1avuvu!n

3exp@axxx
21axvxv1avvv2#. ~A2!

Letting

I c,d5E
0

`

dxE
2`

`

dv f ~x,v !xcvd

3exp@ayyx
21ayuxv1auuv

2# ~A3!

gives

r f ~x,v !5
ADetM

p (
e50

`

(
f 50

`
I e f

~e1 f !! S e1 f
e D (

r 50

e

(
s50

f S e
r D

3S f
sDaxy

e2ravy
r axu

f 2savu
s xe2r 1 f 2sv r 1s

3exp@axxx
21axvxv1avvv2#. ~A4!

Multiplying through byxcvd and integrating overx.0 and
over all v, gives

rI c,d5
1

p
ADetMGc,d,e, f I e, f , ~A5!

where

Gc,d,e, f5
1

~e1 f !! S e1 f
e D (

r 50

e

(
s50

f S e
r D

3S f
sDaxy

e2ravy
r axu

f 2savu
s De2r 1 f 2s1c,r 1s1d ~A6!

and

Da,b5E
0

`

dxE
2`

`

dv xavb exp@2~Av22Bxv1Cx2!#,

~A7!

giving

Da,b5Ap

2 (
t50

@b/2# S b
b22t D ~2A!2

(2t11)
2 S B

2AD b22t

3S C2
B 2

4AD 2(
a1b22t11

2 )

~2t21!!!

3GS a1b22t11

2 D , ~A8!

where@b/2# indicates the integer part ofb/2 and
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A52avv2auu , ~A9!

B5axv1ayu , ~A10!

C52axx2ayy . ~A11!

Thus the problem has been reduced to computing the l
est eigenvalue of anN3N3N3N operator. As in the wedge
case,Gc,d,e, f decouples intoG(c,d),(e, f ) . For alternating per-
sistence, the range of integration overy in Eq. ~A2! should
be from 2` to 0. Substitutingy→2y and u→2u, and
changing the limits of integration gives
e

04110
g-

r f ~x,v !5
ADetM

p E
0

`

dyE
2`

`

du f~2y,2u! (
n50

`
1

n!

3exp@ayyy
21ayuyu1auuu

2#

3~2axyxy2avyvy2axuxu2avuvu!n

3exp@axxx
21axvxv1avvv2#. ~A12!

Due to the symmetry of the system,f (y,u)5 f (2y,2u), so
changingai j →2ai j ( i 5x,v, j 5y,u) in the matrix method
gives alternating persistence.
e paper,
d values
APPENDIX B: SERIES FOR r FOR RANDOM WALK AND RANDOM ACCELERATION

The coefficients for the random walk are

r~a!50.500 00010.318 310a110.115 668a210.021 446a310.015 651a410.015 762a510.000 050a620.003 320a7

10.007 597a810.007 587a920.004 372a1020.005 964a1110.004 840a1210.007 913a1320.001 290a14

20.006 184a1520.000 369a1610.004 205a1710.001 467a1820.000 757a1910.000 989a2010.000 385a21

20.003 272a2220.002 408a2310.003 354a2410.004 972a2520.000 072a2620.003 737a2720.001 786a28

10.000 650a2910.000 270a3010.000 415a3110.002 188a3210.001 629a3320.001 600a3420.002 448a35

10.000 213a3610.001 451a3720.000 501a3820.001 372a3910.000 740a4010.002 125a4110.000 743a42

20.000 602a4320.000 379a4420.000 732a4520.001 956a4620.001 143a4710.001 780a4810.002 824a491O~a50!.

The coefficients for the random-acceleration are

r~a!50.500 00010.477 464a10.021 519a210.000 314a310.035 886a420.063 298a510.029 548a610.032 884a7

20.061 472a810.020 790a910.030 977a1020.039 237a1110.016 107a1210.012 402a1320.035 066a14

10.021 396a1510.020 271a1620.027 422a1710.002 006a1810.005 649a1920.009 557a2010.018 307a21

10.002 099a2220.023 960a2310.007 071a2410.012 405a251O~a26!.

The coefficients in both series have been truncated to six decimal places for brevity. In the plots presented in th
sufficient precision has been retained in the coefficients to ensure the accuracy of the plots and of any quote
for r andu.
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