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Abstract
We consider the mean time to absorption by an absorbing target of a diffusive
particle with the addition of a process whereby the particle is reset to its initial
position with rate r. We consider several generalizations of the model of Evans
and Majumdar (2011 Phys. Rev. Lett. 106 160601): (i) a space-dependent
resetting rate r(x); (ii) resetting to a random position z drawn from a resetting
distribution P(z); and (iii) a spatial distribution for the absorbing target PT (x).
As an example of (i) we show that the introduction of a non-resetting window
around the initial position can reduce the mean time to absorption provided that
the initial position is sufficiently far from the target. We address the problem of
optimal resetting, that is, minimizing the mean time to absorption for a given
target distribution. For an exponentially decaying target distribution centred at
the origin we show that a transition in the optimal resetting distribution occurs
as the target distribution narrows.

PACS numbers: 05.40.−a, 02.50.−r, 87.23.Ge

(Some figures may appear in colour only in the online journal)

1. Introduction

Search problems occur in a variety of contexts: from animal foraging [1] to the target search
of proteins on DNA molecules [2–4]; from internet search algorithms to the more mundane
matter of locating one’s mislaid possessions. Often search strategies involve a mixture of local
steps and long-range moves [5–9] and these are referred to as intermittent search strategies.
For human searchers at least, a natural tendency is to return to the starting point of the search
after the length of time spent searching becomes excessive.

In a recent paper [10] we modelled such a strategy as a diffusion process with an additional
rate of resetting to the starting point x0 with rate r. Considering the object of the search to be
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an absorbing target at the origin, the duration of the search becomes the time for the diffusing
particle to reach the origin. Statistics such as the mean time to absorption of the process then
give a measure of the efficiency of the search strategy, defined by the resetting rate r. Moreover,
the model provides a system where the statistics of absorption times can be computed exactly.

A related model, where searchers have some probabilistic lifetime after which another
searcher will be sent out, has been studied by Gelenbe [11] and mean times to absorption
computed. Also, a model of an intermittent search where searchers undergo phases of
‘teleportation’ to random positions has previously been studied [12]. In the mathematical
literature, the mean first passage time for random walkers that have the option of restarting at
the initial position has been considered [13].

In [10], it was shown that the mean first passage time (MFPT) to the origin for a single
diffusive searcher becomes finite in the presence of resetting (in contrast to a purely diffusive
search where the MFPT diverges). Moreover the MFPT has a minimum value as a function of
the resetting rate r to the fixed initial position x0. Thus, there is an optimal resetting rate r as a
function of the distance to the target x0.

In this work, we address the question of resetting strategies which optimize the MFPT
in a wider context. To this end, we make several generalizations of single-particle diffusion
with resetting studied in [10]. First, we consider a space-dependent resetting rate r(x). Second,
we consider resetting to a random position z (rather than a fixed x0) drawn from a resetting
distributionP(z). Finally, we consider a probability distribution for the absorbing target PT (x).
The general question we ask is: what are the optimal functions r(x), P(x) that minimize the
MFPT for a given PT (x)? Although we do not propose a general solution, the examples
we study turn up some surprising results and illustrate that answers to the problem may be
non-trivial.

The paper is organized as follows. In section 2 we review the calculation of the mean
first passage time for one-dimensional diffusion in the presence of resetting to the initial
position with rate r. In section 3 we introduce spatial dependent resetting r(x) and work out
the example of a non-resetting window of width a around the initial point. In section 4 we
consider the generalization to a resetting distribution P(z) and to a distribution of the target
site PT (x). In section 5 we formulate the general problem of optimizing the mean first passage
time with respect to the resetting distribution P(z). We consider the example of an exponential
target distribution and show that there is a transition in the optimal resetting distribution. We
conclude in section 6.

2. First passage time for single particle diffusion with resetting

We begin by briefly reviewing the one-dimensional case of diffusion with resetting to the
initial position x0 (see figure 1), introduced in [10]. The Master equation for p(x, t|x0), the
probability distribution for the particle at time t having started from initial position x0, reads

∂ p(x, t|x0)

∂t
= D

∂2 p(x, t|x0)

∂x2
− rp(x, t|x0) + rδ(x − x0), (1)

with initial condition p(x, 0|x0) = δ(x − x0). In equation (1) D is the diffusion constant of the
particle and r is the resetting rate to the initial position x0. The second term on the right-hand
side (rhs) of equation (1) denotes the loss of probability from the position x due to reset to the
initial position x0, while the third term denotes the gain of probability at x0 due to resetting
from all other positions.

The stationary state of (1) is the solution of

D
∂2 p∗(x|x0)

∂x2
− rp∗(x|x0) = −rδ(x − x0), (2)

2
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Figure 1. Schematic spacetime trajectory of a one-dimensional Brownian motion that starts at x0
and resets stochastically to its initial position x0 at rate r.

which is determined by the elementary Green function technique, which we now recall.
The solutions to the homogeneous counterpart of (2) are e±α0x where

α0 =
√

r/D. (3)

The solution to (2) is constructed from linear combinations of these solutions which satisfy
the following boundary conditions: p∗ → 0 as x → ±∞, and p∗ is continuous at x = x0.
Imposing these conditions yields

p∗(x|x0) = A exp(−α0|x − x0|). (4)

Note that (4) has a cusp at x = x0. The constant A is fixed by the discontinuity of the first
derivative at x = x0 which is determined by integrating (2) over a small region about x0

∂ p∗(x|x0)

∂x

∣∣∣∣
x→x+

0

− ∂ p∗(x|x0)

∂x

∣∣∣∣
x→x−

0

= −α2
0 . (5)

Carrying this out yields A = α0/2 so that

p∗(x|x0) = α0

2
exp(−α0|x − x0|). (6)

Alternatively, the constant A in (4) could be fixed by the normalization of the probability
distribution (4).

Note that (6) is a non-equilibrium stationary state by which it is meant that there is
circulation of probability even in the one-dimensional geometry. At all points x there is always
a diffusive flux of probability in the direction away from x0 given by −D∂ p/∂x, and a nonlocal
resetting flux in the opposite direction from all points x �= x0 to x0.

2.1. Mean first passage time

We now consider the mean first passage time for the diffusing particle to reach the origin. One
can think of an absorbing target at the origin which instantaneously absorbs the particle (see
e.g. [14]).

A standard approach to first-passage problems is to use the backward Master equation
where one treats the initial position as a variable (for a review see [15]). Let Q(x, t) denote
the survival probability of the particle up to time t (i.e. the probability that the particle has not

3
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visited the origin up to time t) starting from the initial position x. The boundary and initial
conditions are Q(0, t) = 0, Q(x, 0) = 1 (see e.g. [16] for more general reaction boundary
conditions).

The backward Master equation (where the variable x is now the initial position) reads for
the survival probability Q(x, t)

∂Q(x, t)

∂t
= D

∂2Q(x, t)

∂x2
− rQ(x, t) + rQ(x0, t). (7)

Note that Q(x, t) depends implicitly on the resetting position x0 due to the third term on the
right hand side of (7). The second and third terms on the rhs correspond to the resetting of
the initial position from x to x0, which implies a loss of probability from Q(x, t) and a gain of
probability to Q(x0, t).

Equation (7) may be derived as follows. We consider the survival probability Q(x, t +�t)
up to time t + �t, where �t is a small interval of time. We divide the time interval
[0, t + �t] into two intervals: [0,�t] and [t, t + �t]. In the first interval [0,�t], there
are two possibilities: (i) with probability r�t, the particle may be reset to x0 and then for
the subsequent interval [�t, t + �t] this x0 will be the new starting position and (ii) with
probability (1 − r�t), no resetting takes place, but instead the particle diffuses to a new
position (x + ξ ) in time �t, where ξ is a random variable distributed according to a gaussian
distribution P(ξ ) = (4πD�t)−1/2 exp(−ξ 2/4D�t). This new position (x + ξ ) then becomes
the starting position for the subsequent second interval [�t, t + �t]. One then sums over all
possible values of ξ drawn from P(ξ ). Note that we are implicitly using the Markov property
of the process whereby for the second interval [�t, t + �t], only the end position of the first
interval [0,�t] matters. Taking into account these two possibilities, one then gets

Q(x, t + �t) = r �tQ(x0, t) + (1 − r �t)
∫

dξP(ξ )Q(x + ξ, t), (8)

which can be rewritten as
Q(x, t + �t) − Q(x, t)

�t
=

∫
dξ

�t
P(ξ )(Q(x + ξ, t)

− Q(x, t)) + rQ(x0, t) − rQ(x, t) + O(�t). (9)

Taking the limit �t → 0 then yields (7).
The mean first passage time T to the origin beginning from position x is obtained by noting

that − ∂Q(x,t)
∂t dt is the probability of absorption by the target in time t → t + dt. Therefore, on

integrating by parts, we have

T = −
∫ ∞

0
t
∂Q(x, t)

∂t
dt =

∫ ∞

0
Q(x, t) dt (10)

(assuming that tQ(x, t) → 0 as t → ∞). Integrating (7) with respect to time yields

−1 = D
∂2T (x)

∂x2
− rT (x) + rT (x0) (11)

with boundary conditions T (0) = 0 and T (x) finite as x → ∞.
To solve for the mean first passage time beginning at the resetting position x = x0 > 0

we first consider the initial position to be at x > 0, different from the resetting position x0,
then solve (11) with arbitrary x and x0. Once we have this solution we set x = x0 to determine
T (x0) self-consistently.

The general solution to (11) is

T (x) = A eα0x + B e−α0x + 1 + rT (x0)

r
, (12)

4
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Figure 2. The mean first passage time T = 1
r

[
exp

(√
r/D x0

) − 1
]

plotted as a function of r for
fixed x0 = 1 and D = 1. clearly T diverges as r → 0 and as r → ∞ with a single minimum at
r∗ = 2.53962 . . . .

where α0 = √
r/D. The boundary condition that T (x) is finite as x → ∞ implies A = 0 and

the boundary condition T (0) = 0 fixes B. Thus,

T (x) = 1 + rT (x0)

r
[1 − e−α0x]. (13)

Solving for T (x0) self-consistently yields

T (x0) = 1

r
[exp(α0x0) − 1] = 1

r
[exp(

√
r/D x0) − 1]. (14)

Note from (14) that, for fixed x0, T is finite for 0 < r < ∞. As a function of r for fixed
x0, T diverges when r → 0 as

T � x0

(Dr)1/2
. (15)

This is expected since as r → 0, one should recover the pure diffusive behaviour (no resetting)
for which the T is divergent—due to the large excursions that take the diffusing particle away
from the target at the origin. Also T diverges rapidly as r → ∞, the explanation being that as
the reset rate increases the diffusing particle has less time between resets to reach the origin.
In other words, the high resetting rate to x0 cuts off the trajectories that bring the diffusing
particle towards the target.

We now consider T as a function of r for a given value of x0 and define the reduced
variable

z = α0x0 =
( r

D

)1/2
x0. (16)

Since T diverges as r → 0 and r → ∞ it is clear that there must be a minimum of T
with respect to r (see figure 2). The condition for the minimum, dT

dr = 0, reduces to the
transcendental equation

z

2
= 1 − e−z, (17)

5
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which has a unique non-zero solution z∗ = 1.59362 . . . . In terms of the resetting rate, this
means an optimal resetting rate r∗ = (z∗)2D/x2

0 = (2.53962 . . .)D/x2
0, for which the mean first

passage time T (x0) is minimum. The dimensionless variable z (16) is a ratio of two lengths: x0,
the distance from the resetting point to the target, and (D/r)1/2, which is the typical distance
diffused between resetting events. Thus, for fixed D and x0 the mean first passage time of the
particle can be minimized by choosing r so that this ratio takes the value z∗.

3. Space-dependent resetting rate

In this section, we generalize the model of section 2 to the case of space-dependent resetting
rate r(x).

The Master equation for the probability distribution p(x, t|x0) is generalized from (1) to

∂ p(x, t|x0)

∂t
= D

∂2 p(x, t|x0)

∂x2
− r(x)p(x, t|x0) +

∫
dx′r(x′)p(x′, t|x0) δ(x − x0). (18)

The third term on the right-hand side now represents the flux of probability injected at x0

through resetting from all points x �= x0.
The stationary distribution p∗(x|x0) satisfies

D
∂2 p∗(x|x0)

∂x2
− r(x)p∗(x|x0) = −

∫
dx′r(x′)p∗(x′|x0) δ(x − x0). (19)

In general, the stationary state is difficult to determine unless r(x) has some simple form.
The equation for the mean first passage time becomes

− 1 = D
∂2T (x)

∂x2
− r(x)T (x) + r(x)T (x0). (20)

Again, this is difficult to solve generally for arbitrary r(x).
In the following we consider a solvable example where r(x) is zero in a window around

x0 and is constant outside this window.

3.1. Example of a non-resetting window

We consider the case of a non-resetting window of width a about x0, within which the resetting
process does not occur:

r(x) = 0 for |x − x0| < a (21)

= r for |x − x0| � a. (22)

This choice is a rather natural one in the sense that a typical searcher usually does not reset
when it is close to its starting point, but rather the resetting event occurs when it diffuses a
certain threshold distance a away from its initial position.

The Master equation reads

∂ p(x, t|x0)

∂t
= D

∂2 p(x, t|x0)

∂x2
+ rh(t)δ(x − x0) |x − x0| < a (23)

= D
∂2 p(x, t|x0)

∂x2
− rp(x, t|x0) |x − x0| � a, (24)

where

h(t) =
∫

dx p(x, t|x0)θ (|x − x0| − a), (25)

6
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Figure 3. The stationary solution p∗(x|x0) in equation (26)–(27) plotted as a function of x, for the
choice x0 = 1, a = 1, r = 1 and D = 1. The non-resetting window is over x ∈ [0, 2] with the
initial position at x0 = 1. The solution is symmetric around x0 = 1 with a cusp at x = x0 = 1.

with initial condition p(x, 0) = δ(x − x0). Thus h(t) is the probability that the particle is
outside the non-resetting window, i.e. in the resetting zone at time t; the particle is reset to the
origin with a total rate h(t)r.

First, we consider the stationary state. One can solve for the stationary probability using
the Green function technique of section 1. For |x − x0| > a (outside the window), p∗(x|x0)

satisfies D ∂2 p∗(x|x0)

∂x2 = rp∗(x|x0) and should tend to zero as |x| → ∞. For 0 < |x − x0| < a

(inside the window), p∗(x|x0) satisfies D ∂2 p∗(x|x0 )

∂x2 = 0 for all x �= x0. The solution should
be continuous at x = x0, but its derivative must undergo a jump at x = x0 and the jump
discontinuity can be computed by integrating equation (23) across x = x0.

Thus, noting that the solution should be symmetric about x = x0, one has

p∗(x|x0) = A exp(−α0(|x − x0| − a)) for |x − x0| > a (26)

= A − B (|x − x0| − a) for |x − x0| < a, (27)

where α0 = √
r/D and the constants A and B are determined by the discontinuity in the

derivative of p∗(x|x0) at x = x0 and the continuity of the derivative at |x − x0| = a.
The result is

A = α2
0

2 + 2aα0 + a2α2
0

, B = α0A. (28)

The solution has a cusp at x = x0 and a discontinuity in the second derivative at |x − x0| = a
(see figure 3).

We now consider an absorbing trap at the origin. The backward equation for T (x), the
mean time to absorption beginning from x, reads

− 1 = D
∂2T (x)

∂x2
− rT (x) + rT (x0) for |x − x0| > a (29)

7



J. Phys. A: Math. Theor. 44 (2011) 435001 M R Evans and S N Majumdar

−1 = D
∂2T (x)

∂x2
for |x − x0| < a. (30)

The general solution to (30) is

T (x) = Ax + B − x2

2D
(31)

and the solution to (29) that does not diverge as x → ∞ is

T (x) = 1 + rT (x0)

r
+ C e−α0(x−x0−a) for x > x0 + a (32)

T (x) = 1 + rT (x0)

r
+ E e−α0x + F eα0x for x < x0 − a. (33)

The constants A, B,C, E, F are determined by the continuity of T (x) and T ′(x) at |x−x0| = a
and the boundary condition T (0) = 0. The result for T (x0) is

T (x0) = 1

r(1 + aα0)

[
cosh α0(x0 − a)

(
1 + 2aα0 + 3a2α2

0

2
+ a3α3

0

)
+ sinh α0(x0 − a)

(
1 + 2aα0 + 3a2α2

0

2

)]
− 1

r
. (34)

We now consider the reduced parameters z = α0x0 and y = α0a, and T as a function y
for z fixed. The allowed values of y are 0 � y � z. At y = z, one can show that dT

dy

∣∣
y=z > 0.

Therefore the minimum of T with respect to y is either at y = 0 or at a non trivial minimum
0 � y � z.

The condition for a minimum dT
dy = 0 reduces to

2 + y

4 + 5y + 2y2
= tanh(z − y). (35)

Therefore the condition for there to be a nontrivial minimum for y > 0 is given by tanh z > 1/2
or equivalently z > (log 3)/2 = 0.5493 . . . .

In summary, the analysis of the condition for T (y) to be a minimum reveals that: if
z < (log 3)/2 then y = 0 is the minimum of T (y); if z > (log 3)/2 then T (y) has a nontrivial
minimum at 0 < y < z. Therefore, when z < (log 3)/2 the introduction of a window around
the initial site where resetting does not take place does not reduce the mean time to absorption.
A strategy of introducing a non-resetting window is an effective one only when the initial
point is sufficiently far from the search target; otherwise it is advantageous to always reset.

3.2. Optimal resetting function

Having seen in the previous example that non-trivial behaviour emerges for a simple spatial-
dependent resetting rate r(x), one can ask for the optimal function r(x). The optimization
problem would be to minimize T under certain constraints pertaining to the information
available to the searcher. Clearly if there are no constraints, that is one can use full information
about the target position, the optimal strategy is to reset immediately whenever x > x0 and not
reset when x < x0. This corresponds to the choice

r(x) = 0 for x < x0

r(x) = ∞ for x > x0.

In this case problem (20) reduces to the mean first passage time of a diffusive particle with
reflecting barrier at x0 the solution of which is

T ∗(x0) = x2
0

2D
. (36)

8
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Thus, (36) gives the lowest possible mean first passage time for a diffusive process. One can
then ask about how close simple strategies, such as a spatially constant resetting rate r or
non-resetting window, come to approaching this bound.

For example, the case of spatially constant resetting rate r considered in section 2 yields
a minimum MFPT using (17)

T = x2
0

D

(ez − 1)

z2
= x2

0

2D

ez∗

z∗ = 3.0883 . . . T ∗(x0) (37)

As noted in section 3.1, the value 3.0883 may be improved upon by considering a non-resetting
window around x0.

However, (36) uses the crucial information of whether the target (at x = 0) is to the right
or left of the resetting site x0. More realistically, the searcher would not have this information.
The relevant optimization problem is to find the optimal resetting rate r(|x − x0|) (constrained
to be a function of the distance |x − x0| from the resetting site) that minimizes T (x0). This
remains an open problem.

4. Resetting distribution and target distribution

In this section, we consider the generalization to a system with resetting to points distributed
according to P(z). We shall also consider a distribution of the target site PT (x).

4.1. Stationary state

We begin by considering again the one-dimensional case of diffusion but this time with
resetting to a random position: at rate r the particle is reset to a random position z → z + dz
drawn with probability P(z) dz. We refer to P(z) as the reset distribution. For simplicity we
take the initial position x0 to be distributed according to the same distribution as the reset
position p(x0, 0) = P(x0).

The Master equation for the probability density p(x, t) now reads

∂ p(x, t)

∂t
= D

∂2 p(x, t)

∂x2
− rp(x, t) + rP(x). (38)

The stationary solution to (38) is simply found using (6) as the Green function:

p∗(x) =
∫

dzP(z)p∗(x|z), (39)

which, using p∗(x|x0) given by (6), yields

p∗(x) = α0

2

∫
dzP(z) exp(−α0|x − z|)). (40)

4.2. Mean first passage time

The mean first passage time, T (x0, xT ), to a target point xT , starting from x0 with resetting
distribution P(z), satisfies

− 1 = D
∂2T (x0, xT )

∂x2
0

− rT (x0, xT ) + r
∫

dzP(z) T (z, xT ), (41)

with boundary condition T (xT , xT ) = 0. To solve this equation we let

F(xT ) =
∫

dzP(z)T (z, xT ), (42)

then write down the general solution to (41) and solve for F(xT ) self-consistently.

9
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The general solution of (41) which is finite as x0 → ∞ is

T (x0, xT ) = A e−α0|x0−xT | + 1

r
+ F(xT ). (43)

The boundary condition T (xT , xT ) = 0 implies A = − (
1
r + F

)
. Then substituting this

expression for A in (43) and integrating we find

F(xT ) =
(

1

r
+ F(xT )

)(
1 −

∫
dzP(z) e−α0|z−xT |

)
, (44)

which yields

F(xT ) = 1

r

(
α0

2p∗(xT )
− 1

)
. (45)

Inserting this into (43) we obtain

T (x0, xT ) = α0

2rp∗(xT )
[1 − exp(−α0|x0 − xT |)]. (46)

As noted above it is convenient to choose the same distribution for x0 as the resetting
distribution. Averaging over x0 then gives using (39)

T (xT ) = 1

r

[
α0

2p∗(xT )
− 1

]
. (47)

Equation (47) gives the expression for the mean first passage time to a target positioned at xT .
Let us check the case of a single position x0 to which the particle is reset P(z) = δ(z − x0).
In this case (47) becomes

T (xT ) = 1

r
[exp(α0|xT − x0|) − 1], (48)

which recovers (14) when xT is set to 0.
Finally, we average over possible target positions drawn from a target distribution: PT (xT )

T = 1

r

[
α0

2

∫
dxT

PT (xT )

p∗(xT )
− 1

]
. (49)

Equation (49) gives the main result of this section—the MFPT for a resetting distribution
P(x0) and averaged over target distribution PT (xT ).

5. Extremization of mean first passage time

Let us now consider the problem of extremizing T given by (49), for a given target distribution
PT (x), with respect to the resetting distribution P(z). Throughout this section we will assume
a symmetric target distribution: PT (x) = PT (−x) and P′

T (x) = −P′
T (−x).

The problem is to minimize the functional appearing in (49):
∫

dx PT (x)

p∗(x)
where

p∗(x) = α0

2

∫
dzP(z) e−α0|z−x|, (50)

subject to the constraint
∫

dzP(z) = 1. The functional derivative to be satisfied is

δ

δP(y)

[∫
dx

PT (x)

p∗(x)
+ λ

∫
dxP(x)

]
= 0 (51)

where λ is a Lagrange multiplier. Condition (51) yields∫
dx

PT (x)

[p∗(x)]2
e−α0|y−x| = 2λ

α0
. (52)

10
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For (52) to hold for all y requires that
PT (x)

[p∗(x)]2
= λ, (53)

or fixing λ through the normalization of p∗(x)

p∗(x) = P1/2
T (x)∫

dzP1/2
T (z)

. (54)

Equation (54) implies that to minimize T the stationary probability distribution should
be proportional to the square root of the target distribution. This result has been derived in
[17] for the case of searching for the target by sampling a probability distribution P(x).
This corresponds to the limit r → ∞ of our model. For r < ∞ we have the additional
constraint that the optimal p∗(x) should be realizable from a resetting distributionP(z) through
formula (50).

Equation (50) may be solved for P(z) for a desired p∗(x) by taking the Fourier transform
and using the convolution theorem to give

P̃(k) =
(

1 + k2

α2
0

)
p̃∗(k), (55)

where P̃(k) is the Fourier transform of P(x) and p̃∗(k) is the Fourier transform of p∗(x).
We may invert the Fourier transformation to find

P(x) = p∗(x) − 1

α2
0

d2 p∗(x)

dx2
. (56)

However, this solution may become negative in which case the solution to the optimization
problem is unphysical.

5.1. Example of an exponential target distribution

As a simple example, we consider an exponentially decaying target distribution peaked at
x = 0:

PT (x) = β

2
e−β|x|. (57)

We first note that for a delta function resetting distribution P(z) = δ(z − x0) the mean first
passage time (49) diverges when α0 > β. Therefore, for small β (a broad target distribution)
one expects an optimal resetting distribution (for fixed α0) that differs from a delta function.

For β < 2α0, the optimal stationary distribution is from (54)

p∗(x) = β

4
e−β|x|/2. (58)

This expression yields from (56) a resetting distribution that is always positive, thus the optimal
resetting distribution is

P(z) = β

4
e−β|z|/2

[
1 − β2

4α2
0

]
+ β2

4α2
0

δ(z). (59)

For β > 2α0, (59) always gives negative probabilities due to the first term. Therefore we
anticipate that P(x) = δ(x) is at least a locally optimal solution. In fact, one can prove this
is the case by showing that any distribution of the form P(x) = (1 − ε)δ(x) + ε f (x), where
f (x) � 0 and

∫
dx f (x) = 1 leads to an increase in (49) at first order in ε when β > 2α0. (As

the proof is straightforward but somewhat tedious we did not include it here.) Thus a transition
in the form of the optimal resetting distribution, from a single delta function to (59), occurs at
β = 2α0.

11
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5.2. Inversion of p∗(x)

As noted above, the constraint P(x) � 0 means that the optimal p∗(x) given by (54) may not
be realizable from a physical resetting distribution P(z). We are therefore led to the general
question of when a desired stationary distribution (e.g. (54)) which we denote g(x) may be
generated from (50) i.e. when can we invert

g(x) = α0

2

∫
dzP(z) e−α0|z−x| (60)

to obtain a physical P(z)?
Let us first discuss a sufficient condition for the resetting distribution implied by (60) to

be physical.
Equation (55) relates the characteristic functions of the two distributions P(x) and g(x)

(given there by p∗(x)). In terms of the characteristic function, Polya’s theorem [18] states that
if a function φ(k) satisfies: φ(0) = 1; φ(k) is even; φ(k) is convex for k > 0, and φ(∞) = 0;
then φ(k) is the characteristic function of an absolutely continuous symmetric distribution.
Polya’s theorem therefore gives a sufficient condition forP(x) implied by p∗(x) to be physical.

The condition for convexity becomes in one dimension

d2

dk2

[(
1 + k2

α2
0

)
g(k)

]
� 0 for all k � 0. (61)

If the function P̃(k) does not satisfy the conditions of Polya’s theorem, the solution of (60) is
invalid as a probability distribution, i.e. the desired g(x) cannot be realized from any resetting
probability distribution P(z).

In the case where (60) may not be inverted to give a physical P(x), it may be possible to
generate the desired form for g(x) on a finite region by choosing a compact support for P(z).
Let us assume g(x) to be a symmetric function of x. Then if we choose

P(z) = λ

[
g(z) − 1

α2
0

d2g(z)

dz2

]
for |z| � y0 (62)

= 0 for |z| > y0, (63)

where λ is a normalizing constant, we find

p∗(x) = λg(x) for |x| � y0 (64)

p∗(x) = λg(y0) eα0(y0−|x|) for |x| � y0 (65)

provided that y0 is chosen so that

g(y0) + 1

α0
g′(y0) = 0 (66)

g(−y0) − 1

α0
g′(−y0) = 0. (67)

(see the appendix). The second condition follows from the first by the assumed symmetry of
g(x). As an example, we consider the Gaussian distribution

g(x) =
(

β

π

)1/2

e−βx2
. (68)

The inversion of (60) using (56) yields

P(x) = g(x) − 1

α2
0

d2g(x)

dx2
=

(
β

π

)1/2

e−βx2

[
1 + 2β

α2
0

− 4β2x2

α2
0

]
(69)

12
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which becomes negative for

|x| >
α0

2β

(
1 + 2β

α2
0

)1/2

. (70)

However, choosing a compact support for P(z) according to (66) and (67), yields

y0 = α0

2β
(71)

and we find that the resulting distribution (70) is positive for all x.

6. Conclusion

In this paper, we have considered some generalizations of diffusion with stochastic resetting
to the case of spatial-dependent resetting rate and a resetting distribution. We have considered
the mean first passage time to a target which may be situated at a fixed point (the origin) or
distributed according to a distribution and derived the result (49). The minimization of this
quantity may then be formulated as an optimization problem of which we have studied some
simple examples.

In particular, we have seen some perhaps unexpected results. First, the introduction of a
non-resetting window around a fixed resetting position reduces the MFPT when the target is
sufficiently far away. This suggests that the optimal resetting distribution, in the case where
we consider a resetting rate that is symmetric about the resetting point, r(|x − x0|) may be
non-trivial. We have also seen that in the case of an exponentially distributed target (57) the
optimal resetting distribution undergoes a transition from (59) to a pure delta function at the
origin.

Generally, the computation of an optimal resetting distribution is an open problem since
the resetting distribution that minimizes T may be become negative over some domain and
therefore nonphysical. In the case where (56) becomes unphysical, although we do not have
a solution to the extremization problem of minimizing T subject to the additional constraint
P(x) � 0 we may propose likely candidates for extremal solutions. One possibility for the
optimal physical solution is one that has compact support i.e. since the constraint for the
distribution to be physical is that P(x) � 0, one might expect that the optimal solution lies on
the boundary where P(x) = 0 for some regions of x. However, we have no proof that this is
the case.

Further considerations for optimizing mean first passage times in a more realistic search
process would be to add a cost to resetting since in the present model the diffusive particle
instantaneously resets to its selected resetting position. This could be implemented by
attributing some time penalty to each resetting event, as is the case in the framework intermittent
searching.

Appendix. Proof that (63) yields (65)

We wish to show that expression (63) for P(x)

P(z) = λ

[
g(z) − 1

α2
0

d2g(z)

dz2

]
for |z| � y0 (A.1)

= 0 otherwise, (A.2)

yields (64)–(65) for the stationary distribution given by (40), provided that (66)–(67) holds.
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We begin by inserting (A.1)–(A.2) into (40) in the case |x| < y0:

p∗(x) = α0λ

2

{∫ x

−y0

[
g(z) − 1

α2
0

d2g(z)

dz2

]
e−α0(x−z) +

∫ y0

x

[
g(z) − 1

α2
0

d2g(z)

dz2

]
e−α0(z−x)

}
.

(A.3)

We use the following integration by parts, valid for all α0 �= 0∫ b

a

[
g(z) − 1

α2
0

d2g(z)

dz2

]
eα0z dz

=
[

g(b) − 1

α0

dg(z)

dz

∣∣∣∣
z=b

]
eα0b

α0
−

[
g(a) − 1

α0

dg(z)

dz

∣∣∣∣
z=a

]
eα0a

α0
. (A.4)

Inserting this into (A.3) and cancelling terms yields

p∗(x) = α0λ

2

{
2g(x)

α0
+ e−α0(x+y0 )

α0

[
g(−y0) − 1

α0

dg(z)

dz

∣∣∣∣
z=−y0

]

+ eα0(x−y0 )

α0

[
−g(y0) − 1

α0

dg(z)

dz

∣∣∣∣
z=y0

]}
. (A.5)

Then conditions (66)–(67) ensure that p∗(x) = λg(x) for |x| < y0.
In the case x > y0 we find

p∗(x) = α0λ

2

∫ y0

−y0

[
g(z) − 1

α2
0

d2g(z)

dz2

]
e−α0(x−z) dz

= α0λ

2
e−α0x

{
eα0y0

α0

[
g(y0) − 1

α0

dg(z)

dz

∣∣∣∣
z=y0

]
− e−α0y0

α0

[
g(−y0) − 1

α0

dg(z)

dz

∣∣∣∣
z=−y0

]}
= λ e−α0(x−y0 )g(y0) (A.6)

where conditions (66)–(67) have been used.
Similarly in the case x < −y0 we obtain p∗(x) = λg(−y0) eα0(y0+x).
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