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Numerical and analytic results for the exponentu describing the decay of the first return probability of an
interface to its initial height are obtained for a large class of linear Langevin equations. The models are

parametrized by the dynamic roughness exponentb, with 0,b,1; for b5
1
2 the time evolution is Markovian.

Using simulations of solid-on-solid models, of the discretized continuum equations as well as of the associated
zero-dimensional stationary Gaussian process, we address two problems: The return of an initially flat inter-
face, and the return to an initial state with fully developed steady-state roughness. The two problems are shown
to be governed by different exponents. For the steady-state case we point out the equivalence to fractional
Brownian motion, which has a return exponentuS512b. The exponentu0 for the flat initial condition appears
to be nontrivial. We prove thatu0→` for b→0, u0>uS for b,

1
2 and u0<uS for b.

1
2, and calculateu0,S

perturbatively to first order in an expansion around the Markovian caseb5
1
2. Using the exact result

uS512b, accurate upper and lower bounds onu0 can be derived which show, in particular, that
u0>(12b)2/b for small b. @S1063-651X~97!06309-5#

PACS number~s!: 02.50.2r, 05.40.1j, 81.10.Aj
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I. INTRODUCTION

The statistics of first passage events for non-Markov
stochastic processes has attracted considerable recent in
in the physical literature. Such problems appear naturally
spatially extended nonequilibrium systems, where the
namics at a given point in space becomes non-Markov
due to the coupling to the neighbors. The asymptotic de
of first passage probabilities turns out to be hard to comp
even for very simple systems such as the one-dimensi
Glauber model@1# or the linear diffusion equation with ran
dom initial conditions@2#. Indeed, determining the first pas
sage probability of a general Gaussian process with kno
autocorrelation function is a classic unsolved problem
probability theory@3–5#.

In this paper we address the first passage statistics of
tuating interfaces. The large-scale behavior of the model
interest is described by the linear Langevin equation

]h

]t
52~2¹2!z/2h1h ~1!

for the height fieldh(x,t). Here the dynamic exponentz
~usuallyz52 or 4! characterizes the relaxation mechanis
while h(x,t) is a Gaussian noise term, possibly with spat
correlations. We will generally assume a flat initial interfac
h(x,0)50. Since Eq.~1! is linear,h(x,t) is Gaussian and its
temporal statistics at an arbitrary fixed point in space is fu
specified by the autocorrelation function computed from E
~1!,

A~ t,t8![^h~x,t !h~x,t8!&5K@~ t81t !2b2ut82tu2b#,
~2!
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whereK is some positive constant, andb denotes the dy-
namic roughness exponent, which depends onz and on the
type of noise considered. For example, for uncorrela

white noise b5 1
2 @12d/z# for a d-dimensional interface,

while for volume conserving noiseb5 1
2 @12(d12)/z# @6#.

An interface isrough if b.0. In the present work we regar
b as a continuous parameter in the interval ]0,1@ . Note that
for b5 1

2, Eq. ~2! reduces to the autocorrelation function of
random walk, corresponding to the limitz→` ~no relax-
ation! of Eq. ~1! with uncorrelated white noise.

To define the first passage problems of interest, cons
the quantity

P~ t0 ,t !5Prob@h~x,s!Þh~x,t0!;s:t0,s,t01t#. ~3!

We focus on two limiting cases. Fort050, P(t0 ,t) reduces
to the probabilityp0(t) that the interface has not returned
its initial heighth50 at timet. This will be referred to as the
transient persistence probability, characterized by the expo
nentu0,

p0~ t ![P~0,t !;t2u0, t→`. ~4!

On the other hand, fort0→` the interface develops rough
ness on all scales and the memory of the flat initial condit
is lost. In this limit P(t0 ,t) describes the return to a roug
initial configuration drawn from the steady-state distributi
of the process, and the correspondingsteady-statepersis-
tence probabilitypS(t) decays with a distinct exponentuS ,

pS~ t ![ lim
t0→`

P~ t0 ,t !;t2uS, t→`. ~5!
2702 © 1997 The American Physical Society
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56 2703PERSISTENCE EXPONENTS FOR FLUCTUATING INTERFACES
In general, one expects thatP(t0 ,t);t2uS for t!t0 and
P(t0 ,t);t2u0 for t@t0, with a crossover function connec
ing the two regimes.

A particular case of the steady-state persistence prob
was studied previously in the context of tracer diffusion
surfaces@7#. In this work it was observed that the distributio
of first return times has a natural interpretation as a distri
tion of trapping timesduring which a diffusing particle is
buried and cannot move; thus the first passage exponent
translate into an anomalous diffusion law. A simple scal
argument~to be recalled below in Sec. V! was used to derive
the relation

uS512b, ~6!

which was well supported by numerical simulations f
b5 1

8. A primary motivation of the present work is therefo
to investigate the validity of this relation through simulatio
for other values ofb and refined analytic considerations,
well as to understand why it fails for the transient persiste
exponentu0.

The paper is organized as follows. In Sec. II we conv
the nonstationary stochastic processh(x,t) into a stationary
Gaussian process in logarithmic time@2,5#. This representa-
tion will provide us with a number of bounds and scali
relations, and will be used in the simulations of Sec. IV C.
perturbative calculation of the persistence exponents in
vicinity of b5 1

2 is presented in Sec. III. The simulation r
sults are summarized in Sec. IV. Section V reviews the a
lytic basis of relation~6!, and makes contact to earlier wor
on the return statistics of fractional Brownian motion, wh
Sec. VI employs expression~6! for uS to numerically gener-
ate exact upper and lower bounds onu0. Finally, some con-
clusions are offered in Sec. VII.

II. MAPPING TO A STATIONARY PROCESS

Following Refs.@2,5# we introduce the normalized ran
dom variableX5h/A^h2& which is considered a function o
the logarithmic timeT5 lnt. The Gaussian processX(T) is
then stationary by construction,^X(T)X(T8)&5 f 0(T2T8),
and the autocorrelation functionf 0 obtained from Eq.~2! is

f 0~T!5cosh~T/2!2b2usinh~T/2!u2b. ~7!

In logarithmic time the power-law decay~4! of the persis-
tence probability becomes exponential,p0(T);exp(2u0T),
and the task is to determine the decay rateu0 as a functional
of the correlatorf 0 @3–5#.

Similarly a normalized stationary process can be ass
ated with the steady-state problem. First define the he
difference variable

H~x,t;t0![h~x,t1t0!2h~x,t0!, ~8!

and compute its autocorrelation function in the lim
t0→`,
m
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AS~ t,t8!5 lim
t0→`

^H~x,t;t0!H~x,t8;t0!&

5 lim
t0→`

@A~ t01t,t01t8!2A~ t01t,t0!2A~ t0 ,t01t8!

1A~ t0 ,t0!#

5K@ t2b1t82b2ut82tu2b#, ~9!

which is precisely the correlator of fractional Brownian m
tion with Hurst exponentb @8# ~see Sec. V!. NextAS(t,t8) is
normalized byAAS(t,t)AS(t8,t8) and rewritten in terms of
T5 lnt. This yields the autocorrelation function

f S~T!5cosh~bT!2 1
2 u2 sinh~T/2!u2b. ~10!

Comparison of Eqs.~7! and ~10! makes it plausible tha
the two processes have different decay rates of their pe
tence probabilities. Both functions have the same type
short-time singularity

f 0,S~T!512O~ uTu2b!, T→0, ~11!

which places them in theclassa52b in the sense of Slepian
@3#. However, for largeT they decay with different rates
f 0,S(T);exp(2l0,ST) for T→`, where

l0512b, lS5min@b,12b# ~12!

can be interpreted, in analogy with phase ordering kinet
as theautocorrelation exponents@9# of the two processes.

For a stationary Gaussian process with a general auto
relator f (T), the calculation of the decay exponentu of the
persistence probability is very hard. Only in a very few cas
are exact results known@3#. Approximate results can be de
rived for certain classes of autocorrelatorsf (T). For ex-
ample, whenf (T)512O(T2) for small T ~an example be-
ing the linear diffusion equation@2#!, the density of zero
crossings is finite and an independent interval approxima
~IIA ! @2# gives a very good estimate ofu. However, for any
other process for whichf (T)512O(uTua) for small T with
a,2, the density of zeros is infinite and the IIA brea
down. For general processes witha51, a perturbative
method~when the process is not far from Markovian! and an
approximate variational method was developed recently@5#.
This method will be applied to the present problem in S
III. In the remainder of this section we collect some exa
bounds onu; further bounds will be derived in Sec. VI.

Slepian@3# proved the following useful theorem for sta
tionary Gaussian processes with unit variance: For two p
cesses with correlatorsf 1(T) and f 2(T) such that
f 1(T)> f 2(T)>0 for all T, the corresponding persistenc
probabilities satisfyp1(T)>p2(T); in particular, the inequal-
ity u1<u2 holds for the asymptotic decay rates. By applyi
this result to correlators~7! and~10! we can generate a num
ber of relations involving the return exponentsu0 and uS .
For example, taking the derivative of Eq.~7! with respect to
b, one discovers thatf 0(T) increases monotonically with
decreasingb for all T, and consequently

u0~b!>u0~b8! if b<b8. ~13!

For b<b8<(2 ln2)21 the stronger inequality
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~12b8!u0~b!>~12b!u0~b8! ~14!

is proved in the Appendix.
Moreover, rewriting Eq.~10! in the form

f S~T!5e2buTu1 1
2 ebuTu@12e22buTu2~12e2uTu!2b#,

~15!

it is evident that f S(T),exp(2buTu) for b, 1
2 and

f S(T).exp(2buTu) for b. 1
2. A process characterized by

purely exponential autocorrelation function exp(2luTu) is
Markovian, and its persistence probability can be compu
explicitly @3#; the asymptotic decay rateu is equal to the
decay ratel of the correlation function. Thus the fact th
f S(T) can be bounded by Markovian~exponential! correla-
tion functions supplies us with the inequalities

uS>b, b, 1
2 ,

~16!

uS<b, b. 1
2 .

The last inequality can be sharpened to

uS< 1
2 , b. 1

2 . ~17!

This will be demonstrated in the Appendix, where we a
prove that

u0>12b for b, 1
2 ,

~18!

u0<12b for b. 1
2

and

u0>uS for b, 1
2 ,

~19!

u0<uS for b. 1
2 .

Next we record some relations for special values ofb. We
noted already that forb5 1

2 the interface fluctuations reduc
to a random walk, corresponding to the Markovian correla
f 0(T)5 f S(T)5exp(2uTu/2), for which u5l51/2 @3#.
Hence

u0~ 1
2 !5uS~ 1

2 !5 1
2 . ~20!

For b51 both Eqs. ~7! and ~10! become constants
f 0(T)[ f S(T)[1. This implies that the correspondin
Gaussian process is time-independent, and consequentl

lim
b→1

u0~b!5 lim
b→1

uS~b!50. ~21!

For b→0 the transient correlator~7! degenerates to th
discontinuous functionf 0(0)51, f 0(T.0)50. Since this is
bounded from above by the Markovian correlat
f (T)5e2luTu for any l, we conclude that

lim
b→0

u0~b!5`. ~22!

In contrast, the steady-state correlator tends to a non
constant, limb→0f S(T)5 1

2 for T.0, with a discontinuity at
T50, and thereforeuS is expected to remain finite fo
d

o

r

ro

b→0. Note that all the relations derived foruS—Eqs.~16!,
~17!, and~21!—are consistent withuS512b.

III. PERTURBATION THEORY NEAR b5 1
2

We have already remarked that both steady-state and
transient processes reduce to a Markov process whenb5 1

2.
Two of us have developed a perturbation theory for the p
sistence exponent of a stationary Gaussian process w
correlation function is close to a Markov process@5#. When
the persistence probability for a Markov process is written
the form of a path integral, it is found to be related to t
partition function of a quantum harmonic oscillator with
hard wall at the origin. The persistence probability for a p
cess whose correlation function differs perturbatively fro
the Markov process, i.e., whose autocorrelation function

f ~T!5exp~2luTu!1ef~T!, ~23!

may then be calculated from a knowledge of the eigenst
of the quantum harmonic oscillator. In~23! we have used the
same normalization,f (0)51, as elsewhere in this pape
With this normalization,f(0)50. ~Note that a different nor-
malization was employed in Ref.@5#.!

If b5 1
2 1e, Eqs.~7! and~10! may be written in the form

f 0,S5expS 2
uTu
2 D1ef0,S~ uTu!1O~e2!, ~24!

where

f052 cosh
T

2
lnS cosh

T

2D22 sinh
T

2
lnS sinh

T

2D , ~25!

fS5sinh
T

2FT22lnS 2 sinh
T

2D G . ~26!

The result for the persistence exponent†equivalent to Eq.
~7! of reference@5#‡ may most conveniently be written in th
form @11#

u5lH 12e
2l

p E
0

`

f~T!@12exp~22lT!#23/2dTJ .

~27!

Substituting Eqs.~25! and~26! into Eq.~27!, one finds~after
some algebra!

u05 1
2 2e~2A221!1O~e2!, ~28!

uS5 1
2 2e1O~e2!. ~29!

Equation~29! agrees with the relationuS512b, while Eq.
~28! compares favorably with the stationary Gaussian p
cess simulations forb50.45 and 0.55 to be presented in Se
IV C.

IV. SIMULATION RESULTS

A. Solid-on-solid models

Simulations of one-dimensional, discrete solid-on-so
models were carried out forb5 1

8,
1
4, and 3

8. The caseb5 1
8
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56 2705PERSISTENCE EXPONENTS FOR FLUCTUATING INTERFACES
describes an equilibrium surface which relaxes through
face diffusion, corresponding toz54 in Eq. ~1! and volume
conserving noise with correlator

^h~x,t !h~x8,t8!&52¹2d~x2x8!d~ t2t8!. ~30!

The casesb5 1
4 and 3

8 are realized for nonconserved whi
noise in Eq.~1! and dynamic exponentsz52 and 4, respec-
tively @6#.

In all models the interface configuration is described b
set of integer height variableshi defined on a one-
dimensional latticei 51, . . . ,L with periodic boundary con-
ditions. For simulations of the transient return problem, la
lattices (L523105 – 23106) were used, while for the
steady state problem we chose small sizes,L5100–200 for
dynamic exponentz54 andL51000 forz52, in order to be
able to reach the steady state within the simulation time.

The precise simulation procedure is somewhat depen
on whether the volume enclosed by the interface is c

served~as forb5 1
8 ) or not. To simulate the transient retur

problem with conserved dynamics, the interface was p
pared in the initial statehi50, and each site was equippe
with a counter that recorded whether the heighthi had re-
turned tohi50. The fraction of counters still in their initia
state then gives the persistence probabilityp0(t). For the
steady-state problem the interface was first equilibrated f
time teq large compared to the relaxation time;Lz @6,12#.
Then the configurationhi(teq) was saved, and the fraction o
sites which had not yet returned tohi(teq) was recorded ove
a prescribed time intervalteq,t,teq1t1. At the end of that
interval the current configurationhi(teq1t1) was chosen as
the new initial condition, and the procedure was repea
After a suitable number of repetitions~typically 104 for
z54 and 2000 forz52), the surviving fraction gives an
estimate ofpS .

The models used in the casesb5 1
4 and 3

8 are growth mod-
els, in which an elementary step consists in chosing at
dom a sitei and then placing a new particle,hj→hj11,
either at j 5 i or at one of the two nearest-neighbor sit
j 5 i 61, depending on the local environment. For these n
conserved models the procedures described above have
modified such that the calculation of the surviving fractio
p0 andpS is performed only when a whole monolayer—th
is, one particle per site—has been deposited. At these
stances the average height is an integer which can be
tracted from the whole configuration in order to deci
whether a given height variable has returned to its ini
state when viewed in a frame moving with the avera
growth rate.

We now briefly describe the results obtained in the c
served case. In Ref.@7# the steady-state return problem f
b5 1

8 was investigated in the framework of the standard o
dimensional solid-on-solid model with Hamiltonian

H5J(
i

uhi 112hi u, ~31!

and Arrhenius-type surface diffusion dynamics@13#. We ex-
tended these simulations to longer times and to different
ues of the coupling constantJ. Figure 1 shows that the ex
r-

a

e

nt
-

-

a

d.

n-

-
be

n-
b-

l
e

-

-

l-

ponent uS is independent ofJ, and that its value is
numerically indistinguishable fromuS5 7

8 predicted by Eq.
~6!.

Since the transient persistence probabilityp0 decays very
rapidly for b5 1

8, a more efficient model was needed in ord
to obtain reasonable statistics. We therefore used a restr
solid-on-solid model introduced by Ra´cz et al. @14#. In this
model the nearest-neighbor height differences are restri
to

uhi 112hi u<2. ~32!

In one simulation step a sitei is chosen at random, and
diffusion move to a randomly chosen neighbor is attempt
If the attempt fails due to condition~32!, a new random site
is picked. Figure 2 shows the transient persistence proba
ity p0(t) obtained from a large-scale simulation of th
model. The curve still shows considerable curvature, and
are only able to conclude that probablyu0.3.3 for this pro-
cess.

Figure 2 also shows transient results forb5 1
4 and 3

8. In
the former case we used a growth model introduced by F
ily @15#, in which the deposited particle is always placed
the lowest among the chosen sitei and its neighbors,
whereas forb5 3

8 we used the curvature model introduced
Ref. @16#. Our best estimates ofu0 for these models are
collected in Table I, along with the values foruS which
agree, within numerical uncertainties, with the relation~6! in
all cases.

B. Discretized Langevin equations

We solved Eq.~1! in discretized time and space for th
real-valued functionh(xi ,tn), where tn[nDt and xi[ iDx
with n50,1,2, . . . andi 50, . . . ,L21 in a system with pe-

FIG. 1. Steady-state persistence probabilitypS(t) for the
Arrhenius surface diffusion model with coupling consta
J50.25, 0.5, and 1. Systems of sizeL5100 were equilibrated for
teq553107 attempted moves per site. Then data were collec
over 104 time intervals of lengtht15104. The dashed line has slop
uS512b5

7
8.
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2706 56J. KRUGet al.
riodic boundary conditions. For the time discretization w
used a simple forward Euler differencing scheme@17#:

]h~xi ,tn!

]t
[

h~xi ,tn11!2h~xi ,tn!

Dt
. ~33!

TABLE I. Numerical estimates of the persistence exponentsuS

and u0, compared to the fractional Brownian motion resu
uS512b ~third column! and to the optimal boundsumin andumax

derived in Sec. VI~last two columns!. With the exception of the
values marked with an asterisk(* ), which were obtained using dis
crete solid-on-solid models~Sec. IV A!, the data forb<0.40 are
taken from simulations of discretized Langevin equations~Sec.
IV B !, while those forb>0.45 were generated using the equivale
stationary Gaussian process~Sec. IV C!. In all cases the error bar
reflect a subjective estimate of systematic errors.

b uS 12b u0 umin umax

0.125(* ) 0.8660.02 0.875 .3.3 6.125 7.359
0.2 0.78860.01 0.8 2.060.1 2.333 3.200
0.25(* ) 0.75460.01 0.75 1.660.15 1.547 2.250
0.25 0.74060.01 0.75 1.5560.02 1.547 2.250
0.3 0.6960.01 0.7 1.1060.05 1.141 1.633
0.375(* ) 0.63560.01 0.625 0.8460.01 0.801 1.042
0.375 0.62560.01 0.625 0.8560.01 0.801 1.042
0.4 0.6060.01 0.6 0.7660.1 0.723 0.900
0.45 0.5360.01 0.55 0.5860.02 0.598 0.672
0.55 0.4460.01 0.45 0.4160.01 0.415 0.450
0.6 0.3960.01 0.4 0.3560.01 0.348 0.400
0.65 0.34660.005 0.35 0.29560.005 0.289 0.350
0.75 0.24760.005 0.25 0.20160.005 0.191 0.250
0.85 0.15060.005 0.15 0.12160.005 0.107 0.150

FIG. 2. Transient persistence probabilityp0(t) for three differ-
ent solid-on-solid models described in the text. The system s
used wereL523105 for b5

1
8, andL523106 for b5

1
4 and 3

8. For

b5
1
8 (b5

1
4 ) an average over 1000~10! runs was taken, while the

data forb5
3
8 constitute a single run. The slopes of the dashed li

correspond to the exponent estimates in the fourth column of T
I.
The spatial derivatives for the casesz52 and 4 considered in
the simulations were discretized as

¹2h~xi ![h~xi 21!22h~xi !1h~xi 11!, ~34!

~¹2!2h~xi ![h~xi 22!24h~xi 21!16h~xi !24h~xi 11!

1h~xi 12! ~35!

for the functionh(xi)[h(xi ,tn) at any given timetn . Here
and in the simulations, the spatial lattice constantDx was set
to unity.

With these definitions, we iterated the equation

h~xi ,tn11!5h~xi ,tn!2Dt~2¹2!z/2h~xi ,tn!

1ADth~xi ,tn!, ~36!

where h(xi ,tn) is a Gaussian distributed random numb
with zero mean and unit variance whose correlations will
specified below.

Von Neumann stability analysis@17# shows that values
Dt< 1

2 and 1
8 for z5 2 and 4, respectively, have to be used

keep the noise-free iteration stable. The simulations sho
that the scheme remained stable withDt50.4 and 0.1 even
in the noisy case.

We used white noisehw(xi ,tn) with a correlator

^hw~xi ,tn!hw~xj ,tm!&5d i , jdn,m ~37!

in the simulations, as well as spatially correlated no
hr(xi ,tn) with

^hr~xi ,tn!hr~xj ,tm!&5gr~xi2xj !dn,m , ~38!

where

gr~xi2xj ![H uxi2xj u2r21, iÞ j

1, i 5 j
~39!

andr, 1
2 is a real number. A different choice of regularizin

g(0) @18# did not change the results. IfSr(k) denotes the
discrete Fourier transform ofgr , we defined

hr~k,t ![AuSr~k!ur kexp~2p iwk!, ~40!

with r k being a Gaussian distributed amplitude with ze
mean andwkP@0,1@ a uniformly distributed random phas
@18#. Due to the regularizationg(0)51, which fixes the av-
erage value ofSr , one has to use the modulus in Eq.~40! as
Sr can be negative for somek. Iterating Eq.~36! with z52,
the correlated noise~40! with r, 1

2 leads to surface rough
ness with a measured roughness exponentbm that agrees
with the predictionb5(112r)/4 of the continuum equation
~1! within error bars. The caseb. 1

2, i.e., r. 1
2 is not acces-

sible by this method. The simulated systems had a size
L54096, and averages were typically taken over 3000 in
pendent runs.

In all cases, the simulation was started with a flat ini
condition h(x,0)50. To measure the persistence probab
ties, the configurationh(x,t0) and the consecutive on
h(x,t01Dt) were kept in memory during the simulation. I
each following iterationtn5(t01Dt)1nDt, n51,2,3, . . . ,
an initially zeroed counter at each sitex was increased
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as long as sgn@h(x,tn)2h(x,t0)#5sgn@h(x,t01Dt)
2h(x,t0)#. The fraction of counters with a value larger tha
t then gave the persistence probabilityp(t). For measure-
ment of u0, t0 was chosen to be zero, foruS , Dt!t0!Lz,
and the power-law behavior in the regimeDt!t!t0 was
used.

For comparison,uS was also measured in small system
L5128 in the steady statet@Lz for z52 with uncorrelated
noise. The results agreed with the measurements
Dt!t0!Lz. However, in the steady state, one has to ta
care to measure the power-law decay ofpS(t) only up to the
correlation time;Lz, so that we preferred measurement
the regimeDt!t0!Lz here.

Figure 3 shows typical curvespS(t) and p0(t) obtained
from the numerical solution of the discretized Langev
equation~36! with correlated noise for the valuesr520.1,
0.1, and 0.3. A summary of all measured persistence ex
nentsu0 anduS as a function of the roughness exponentb
can be found in Table I.

C. Simulation of the stationary Gaussian process

Since a Gaussian process is completely specified by
correlation function, it is possible to simulate it by constru
ing a time series that possesses the same correlation func
This is most easily performed in the frequency domain.

FIG. 3. ~a! Steady-state persistence probabilitypS(t) from the
numerical solution of the discretized Langevin equation withz52
and correlated noise (r520.1, 0.1, and 0.3!. The thick lines rep-
resent fits to the last decade ofpS(t). The slopes are given in th
second column of Table I.~b! Same as~a! for the transient persis
tence probabilityp0(t).
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Supposeh̃(v) is ~the Fourier transform of! a Gaussian
white noise, witĥ h̃(v)h̃(v8)&52pd(v1v8). Let

X̃~v!5h̃~v!A f̃ ~v!, ~41!

where f̃ (v) is the Fourier transform of the desired correl
tion function@notice that f̃ (v) is the power spectrum of the
process, so it must be positive for allv#. Then the correlation
function of X̃ is

^X̃~v!X̃~v8!&52p f̃ ~v!d~v1v8!. ~42!

The inverse Fourier transformX(T) is therefore a stationary
Gaussian process with correlation functio
^X(T)X(T8)&5 f (T2T8).

The simulations were performed by constructing Gauss
~pseudo!white noise directly in the frequency domain, no

malizing by the appropriateA f̃ (v), then fast-Fourier-
transforming back to the time domain. The distribution
intervals between zeros, and hence the persistence prob
ity, may then be measured directly. The resulting proc
X(T) is periodic, but this is not expected to affect the resu
provided the periodNdT is sufficiently long, whereN is the
number of lattice sites used anddT is the time increment
between the lattice sites. It is desirable forN to be as large as
possible, consistent with computer memory limitations
typically N5219 or 220. The time stepdT must be suffi-
ciently small for the short-time behavior of the correlatio
function to be correctly simulated, but also sufficiently lar
that the period of the process is not too small. Typical valu
for dT were in the range 1024–1022. Several different val-
ues ofdT were used for eachb, to check for consistency
and the results were in each case averaged over several
sand independent samples.

This method works best for processes that are ‘‘smoot
The density of zeros for a stationary Gaussian proces
A2 f 9(0)/p @10#, which is only finite if f (T)512O(T2).
However, the correlation functions for the processes un
consideration behave like Eq.~11! at short time, so they have
an infinite density of zeros. Any finite discretization schem
will therefore necessarily miss out on a large number of
ros, and will presumably overestimate the persistence p
ability and hence underestimateu ~this drawback is not
present if Eq.~1! is simulated directly, sincedT5dt/t effec-
tively becomes zero ast→`). Nevertheless, the simulation
were found to be well behaved whenb was greater than 0.5
with consistent values ofu for different values ofdT. How-
ever, whenb was less than 0.5 it was found to be increa
ingly difficult to observe such convergence before finite-s
effects became apparent. Convergence was not achieve
b,0.45. Figure 4 shows the persistence probability for b
the steady state and the transient processes withb50.45 and
0.75, for two values ofdT in each case. The agreement
the data for the different values ofdT is better for the larger
value ofb.

A summary of the measured values ofu for different
values ofb is found in Table I. The quoted errors are su
jective estimates based on the consistency of the results
different values ofdT, and are smaller for the larger value
of b due to the process being smoother. Forb.0.5, the
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estimated values ofuS agree well with the prediction 12b,
while the result foru0 when b50.55 agrees well with the
perturbative prediction'0.409 from Eq.~28!. For b50.45,
the predictionuS512b lies outside the quoted error bar
reflecting the difficulty of assessing the systematic errors
the simulations, while the result foru0 is consistent with the
prediction'0.591 of the perturbation theory.

V. PERSISTENCE EXPONENT OF FRACTIONAL
BROWNIAN MOTION

The numerical results presented in Sec. IV, as well as
pertubative calculation of Sec. III, clearly demonstrate
validity of identity ~6!, uS512b, over the whole range
0,b,1. Since the special property of the steady-state p
cess which is responsible for this simple result is obscu
by the mapping performed in Sec. II, we now return to t
original, unscaled process in timet. The crucial observation
is that the limiting process limt0→`H(x,t;t0) defined in Eqs.
~8! and~9! has, by construction,stationary increments, in the
sense that

s2~ t,t8![ lim
t0→`

^@H~x,t;t0!2H~x,t8;t0!#2&

52Kut2t8u2b ~43!

FIG. 4. ~a! Persistence probability obtained from simulations
the equivalent stationary Gaussian process for both the transien
the steady-state case, withb50.45. Two values of the time incre
mentdT are shown.~b! Same as~a! for b50.75.
n

e
e

-
d

depends only ont2t8. The power law behavior of varianc
~43! is the defining property of thefractional Brownian mo-
tion ~fBm! introduced by Mandelbrot and van Ness@8#, and
identifiesb as the ‘‘Hurst exponent’’ of the process.

The first return statistics of fBm has been addressed
viously in the literature@19–21#, and analytic arguments a
well as numerical simulations supporting relation~6! have
been presented. It seems that the relation in fact applies m
broadly, to general self-affine processes which need no
Gaussian@20,22#. For completeness we provide in the fo
lowing a simple derivation along the lines of Refs.@20–22#.

We use H(t) as a shorthand for the fBm limit o
H(x,t;t0) for t0→`. Let H1[H(t1), and definer(t) as the
probability thatH has returned to the levelH1 ~not necessar-
ily for the first time! at time t11t. Obviously, using Eq.
~43!, we have

r~t!5
1

A2ps~t!
;t2b, t→`. ~44!

The set of level crossings becomes sparser with increa
distance from any given crossing. It is ‘‘fractal’’ in the sen
that the density, viewed from a point on the set, decays
t2(12D) with D512b.

We now relate the decay, Eq.~44!, to that of the persis-
tence probabilitypS(t). Consider a time interval of length
L@1. According to Eq.~44!, the total numberN(L) of re-
turns to the levelH15H(t1) in the intervalt1,t,t11L is
of the order

N~L !;L12b. ~45!

Now let

q~t!;2dpS /dt;t2~11uS! ~46!

denote the probability distribution of time intervals betwe
level crossings. The numbern(t) of intervals of lengtht
within the interval@ t1 ,t11L# is proportional toq(t), and
can be written as

n~t!5n0~L !t2~11uS!, ~47!

where the prefactorn0(L) is fixed by the requirement tha
the total length of all intervals should equalL, i.e.,

E
0

L

dt tn~t!;L. ~48!

This givesn0(L);LuS, and sinceN(L);n0(L) comparison
with Eq. ~45! yields the desired relation~6!.

In Ref. @7# an essentially equivalent argument was give
however, it was also assumed that the intervals betw
crossings are independent, which is clearly not true due
the strongly non-Markovian character of the fBm@8#. Here
we see that what is required is not independence, but o
stationarity of interval spacings~that is, of increments of
H). The latter property does not hold for the transient pro
lem, where the probability of an interval between subsequ
crossings depends not only on its length, but also on its

f
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sition on the time axis. For the transient process the varia
of temporal increments can be written in a form analogou
Eq. ~43!,

s2~ t,t8!5^„h~x,t !2h~x,t8!…2&52Kab~ t8/t !ut2t8u2b,
~49!

where the positive functionab interpolates monotonically
between the limiting valuesab(0)522b21 and ab(1)51.
This would appear to be a rather benign~scale-invariant!
‘‘deformation’’ of the fBm, however, as we have seen, t
effects on the persistence probability are rather dramatic
small b. Similar considerations may apply to the Rieman
Liouville fractional Brownian motion@8#, which shares the
same kind of temporal inhomogeneity@27#.

It is worth pointing out thatstationaryGaussian processe
with a short-time singularity f (T);12O(uTua), T→0
@compare to Eq.~11!# have level crossing sets which a
fractal, in the mathematical sense@23#, with Hausdorff di-
mensionD512a/2 @24,25#. However, as was emphasize
by Barbé@26#, this result only describes the short-time stru
ture of the process; a suitably defined scale-dependen
mension of the coarse-grained set always tends to unity
large scales, since the coarse-grained density of crossin
finite. In other words, the crucial relation~44! holds for
t→0 but not for t→`. In the present context this implie
that, although the stationary correlatorsf 0 and f S share the
same short-time singularity@Eq. ~11!#, for f 0 this does not
provide us with any information about the persistence ex
nentu0.

VI. EXACT NUMERICAL BOUNDS FOR u0

In Sec. II several rigorous analytic bounds foru0 were
obtained by comparing the correlatorf 0(T) to a function
with known persistence exponent and using Slepian’s th
rem @3#. Having convinced ourselves, in Sec. V, that expr
sion ~6! for uS is in fact exact in the whole interva
0,b,1, we can now employ the same strategy to obt
further bounds by comparingf 0(T,b) to f S(T,b). These
bounds turn out to be very powerful becausef 0(T,b) and
f S(T,b) share the same type of singularity atT50 @see Eq.
~11!#.

Let f A(T) and f B(T) be monotonically decreasing func
tions with the same class of analytical behavior nearT50.
There will always exist numbersbmin and bmax such that
f A(bmaxT)< f B(T)< f A(bminT) is satisfied for allT. Since
the persistence exponent for a process with correlation fu
tion f A(bT) is just buA , whereuA is the persistence expo
nent for the process with correlation functionf A(T), we can
deduce from Slepian’s theorem thatbminuA<uB<bmaxuA .
We may therefore find upper and lower bounds for the p
sistence exponent of a given process if we know the per
tence exponent for another process in the same class. In
ticular, we may use result~6! for uS to obtain bounds for
u0.

Finding by analytic means the most restrictive values
bmin and bmax such that f S(bmaxT,b)< f 0(T,b)
< f S(bminT,b) is a formidable task. Our approach is to stu
the analytical behavior nearT50 andT5` to find values
where the inequalities are satisfied in the vicinity of bo
ce
o
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limits, and then investigate numerically whether the inequ
ties are satisfied away from these asymptotic regimes.
same leading small-T behavior is obtained forf S(bT,b) and
f 0(T,b) when b52(1/2b)21, and the same large-T behavior
is found when b5(12b)/b for b,1/2 and b51 for
b.1/2. We conclude that

bmin<H minS 2~1/2b!21,
1

b
21D for b, 1

2

2~1/2b!21 for b. 1
2 ,

~50!

bmax>H maxS 2~1/2b!21,
1

b
21D for b, 1

2

1 for b. 1
2 .

~51!

Surprisingly, we find in the majority of cases that inequa
ties ~50! and ~51! are satisfied as equalities. Specifically,
the cases where the corrections to the leading analytic be
ior has the appropriate sign to ensure thatf S(bT,b) is a
bound for f 0(T,b) in both limits T→0 andT→`, then nu-
merical investigation revealed it to be a bound for allT. We
are therefore able in the following cases to quote the m
restrictive bounds and their region of applicability in analy
cal form, although the validity of the bounds has only be
established numerically:

u0>
~12b!2

b
for 0,b,b1~50.1366 . . . !, ~52!

u0>~12b!2~1/2b!21 for b1,b, 1
2 , ~53!

u0<
~12b!2

b
for b2~50.1549 . . . !,b, 1

2 , ~54!

u0<12b for b. 1
2 . ~55!

The two critical valuesb150.1366 . . . andb250.1549 . . .
correspond to the solutions in ]0,0.5@ of
(1/b1)2152(1/2b1)21 and b2522b223, respectively. Note
that Eq.~55! coincides with the rigorous result in Eq.~18!.

For other values ofb, the sign of the leading correction
implies that Eqs.~50! and ~51! are only satisfied as an in
equality, and the best value of the bound has to be obta
numerically by finding the value ofb where f S(bT,b)
touchesf 0(T,b) at a point.

It is also possible to obtain bounds onu0(b) by compar-
ing f 0(T,b) with f S(bT,b8), whereb8Þb. Consideration
of the behavior at smallT shows that a lower bound onu0
may be obtained whenb8.b, whereas an upper bound ma
be obtained forb8,b. In the majority of cases, it can b
shown that the most restrictive bounds are in fact obtai
by b85b. For instance, consideration of the large-T behav-
ior for 0,b,b1 shows that bmin<(1/b8)21, so
u min<@(1/b8)21#(12b). Therefore, since this inequalit
is satisfied as an equality forb85b @see Eq.~52!# and
b8>b, the best bound is obtained whenb85b. Similarly,
the inequalities~54! and ~55! can be shown to be the be
obtainable by this method. However, forb1,b, 1

2, a pertur-
bative consideration withb85b1e shows that a larger
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value of umin may be obtained fore small and positive, so
Eq. ~53! is not the best bound that may be obtained. A n
merical investigation shows that the optimal value ofb8 is
nevertheless very close tob, and an improvement inumin of
no more than'3% was so obtained. Forb outside the
ranges quoted in Eqs.~52!–~55!, it was found by numerica
investigation thatb5b8 gave the best bound.

Numerical values of these bounds are listed in Table I,
comparison with the simulation data. The contents of the
three columns of this table are also plotted in Fig. 5. T
upper and lower bounds are~perhaps! surprisingly close to-
gether. Notice that the lower bound foru0 whenb50.125 is
6.125, whereas the discrete solid-on-solid simulatio
yielded the inconclusive value.3.3. All the other data are
consistent with the bounds, within numerical error. It is
teresting to note that the data, as well as the exact pertu
tion theory result, tend to lie much closer to the lower th
the upper bound.

VII. CONCLUSIONS

In this paper we have investigated the first passage st
tics for a one-parameter family of non-Markovian, Gauss
stochastic processes which arise in the context of inter
motion. We have identified two persistence exponents
scribing the short-time~transient! and long-time ~steady
state! regimes, respectively.

For the steady-state exponent the previously conjectu
relation uS512b @7# was confirmed. While this relation
follows from simple scaling arguments applied to the ori
nal process, it is rather surprising when viewed from

FIG. 5. Summary of data for the transient exponentu0(b), ob-
tained from simulations of the solid-on-solid models~squares!, dis-
cretized Langevin equations~triangles! and the equivalent station
ary process~diamonds!. The bold line is the perturbation result~28!,
while the shaded area shows the range enclosed by the exact
and lower bounds derived in Sec. VI.
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perspective of the equivalent stationary process with auto
relation function~10!: It provides theexactdecay exponent
for a family of correlators whose classa52b ~in the sense
of Slepian@3#! covers the whole intervalaP]0,2@ ; previous
exact results were restricted toa51 anda52 @3#. We dem-
onstrated in Sec. VI how this can be exploited to obta
accurate upper and lower bounds for other processes w
the same class.

Estimates for the nontrivial transient exponentu0 were
obtained using a variety of analytic, exact, and perturba
approaches, as well as from simulations. The numer
techniques—direct simulation of interface models and c
struction of realizations of the equivalent stochastic proce
respectively—are complementary, in the sense that
former is restricted to the regimeb, 1

2, while the latter gives
the most accurate results forb. 1

2. The results summarized
in Fig. 5 provide a rather complete picture of the functi
u0(b).

Finally, we briefly comment on a possible experimen
realization of our work. Langevin equations of type~1! are
now widely used to describe time-dependent step fluct
tions on crystal surfaces observed with the scanning tun
ing microscope@28#. From such measurements the autoc
relation function of the step position can be extracted, a
different values ofb have been observed, reflecting differe
dominant mass transport mechanisms@29#. Thus it seems
that, perhaps with a slight refinement of the observation te
niques, the first passage statistics of a fluctuating step
also be accessible to experiments.
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APPENDIX: DERIVATION OF SOME EXPONENT
INEQUALITIES

To establish Eq. ~17! we need to show tha
f S(T)>exp(2uTu/2) for all T, provided thatb. 1

2. To this
end we rewrite Eq.~10! in the form

f S~T!5 1
2 ebuTu@11e22buTu2~12e2uTu!2b#, ~A1!

and notice that, forb. 1
2, @12exp(2uTu)#2b<12exp(2uTu).

Thus

f S~T!> 1
2 @e2buTu1e2~12b!uTu#>e2uTu/2, ~A2!

where the last inequality follows from the fact that the e
pression in the square brackets is an increasing function ob
for b. 1

2.
Next we consider relations~18!. We express Eq.~7! in the

form

f 0~T!5222bebuTug~e2uTu!, ~A3!

where the functiong is given by

per
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g~y!5~11y!2b2~12y!2b. ~A4!

Taking two derivatives with respect toy, it is seen that
g9>0 for b, 1

2 and g9<0 for b. 1
2. Since g(0)50 and

g(1)522b always, it follows thatg(y) is bounded by the
linear function 22by, from above forb, 1

2 and from below
for b. 1

2. Inserted back into Eq.~A3! this implies

f 0~T!<e2~12b!uTu for b, 1
2 ,

~A5!

f 0~T!>e2~12b!uTu for b. 1
2 ,

and Eq.~18! follows by applying Slepian’s theorem@3# in
conjunction with the fact thatu5l for purely exponential
~Markovian! correlators.

Inequalities~19! are a little more subtle to prove. Let u
first consider the case 1/2,b,1. We need to prove tha
f 0(T)> f S(T) for all T. Then the relationu0<uS will follow
from Slepian’s theorem. Denotingy5e2uTu and using the
expressions off 0(T) and f S(T), we then need to prove tha
the function F(y)5(11y)2b1(a21)(12y)2b2a(y2b

11) ~wherea522b21) is positive for all 0<y<1.
First we note, by simple Taylor expansion aroundy50

and y51, that F(y).0 for y close to 0 and 1. The firs
derivative, F8(y) starts at the positive value 2b(22a) at
y50, and approaches 0 from the negative side asy→12.
The second derivativeF9(y) starts at2` as y→01 and
approaches1` as y→12. We first show thatF9(y) is a
monotonically increasing function ofy in 0<y<1.

To establish this, we consider the third derivativ
F-(y)52b(2b21)(2b22)G(y), where

G~y!5~11y!2b232~a21!~12y!2b232ay2b23.
~A6!

Now, since (11y)(2b23),y(2b23) for all 0<y<1, we have
G(y),2(a21)@y2b231(12y)2b23# implying G(y),0
for 0<y<1. Since 1

2 <b<1, it follows thatF-(y).0 for
all 0<y<1. Therefore,F9(y) is a monotonically increasing
function of y for 0<y<1 and hence crosses zero only on
in the interval @0,1#. This implies that the first derivative
F8(y) has one single extremum in@0,1#. However, since
F8(y) starts from a positive value aty50 and approaches 0
from the negative side asy→12, this single extremum mus
be a minimum. Therefore,F8(y) crosses zero only once i
v.

ys

e

,

@0,1# implying that the functionF(y) has only a single ex-
tremum in @0,1#. Since,F(y) for y→01 and y→12, this
must be a maximum. Furthermore,F(y) can not cross zero
in @0,1# because that would imply more than one extrem
which is ruled out. This therefore proves thatf 0(T)> f S(T)
for all T for b> 1

2 and, hence, using Slepian’s theorem
u0<uS . Using similar arguments, it is easy to see that
reverse,u0>uS is true forb<1/2.

Finally we prove inequality~14! which relates the values
of u0 for two different exponentsb andb8.b, subject to an
additional constraint to be specified below. In the same sp
as above, one can show that after defini
g5(12b)/(12b8).1, one obtains

f 0~T,b!< f 0~gT,b8! ~A7!

for b,b8 andb222b<b8222b8.
Both functions in Eq.~A7! decay exponentially at large

time with the same decay ratel0512b5g(12b8), such
that their ratio approaches a constant whenT→`. The last
condition b222b<b8222b8 expresses that the limit of thi
ratio must be less than unity. Asf 0(T,b)< f 0(gT,b8) in the
vicinity of T50 ~this is just a consequence ofb,b8), and
as a careful study shows that (d/dT)@ f 0(T,b)/ f 0(gT,b8)#
has at most one zero in the range ]0,`@ , we conclude that
f 0(T,b)/ f 0(gT,b8),1 if and only if the limit of this ratio
for T→` is less than unity. In practice, the condition e
pressing this constraint can be violated only ifb.1/2 and
b8.(2 ln2)21'0.721 347 5 . . . .

Using Slepian’s theorem, and the fact that the persiste
exponent associated withf 0(gT,b) is exactly g times the
persistence exponent associated withf 0(T,b) @3#, we arrive
at inequality ~14! which holds under the conditions state
after Eq.~A7!. Settingb or b8 equal to1

2 ~keepingb,b8),
Eq. ~14! reduces to bounds~18!.

For b8.b. 1
2, inequality~14! comes rather close to bein

satisfied as an equality. For example, settingb50.55 and
b850.85, Eq.~14! requires thatu0(b)/u0(b8)>3, while the
numerical data in Table I yieldu0(b)/u0(b8)53.39. The
only pair of values in Table I which violates inequality~14!
is (b,b8)5(0.75,0.85). Since for these values the conditi
b222b<b8222b8 is also violated, this may be taken as a
indication that the numerical estimates forb. 1

2 are rather
accurate.
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