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Persistence of a particle in the Matheror-de Marsily velocity field
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We show that the longitudinal positiof(t) of a particle in a ¢+ 1)-dimensional layered random velocity
field (the Matheron—de Marsily modetan be identified as a fractional Brownian motid8m) characterized
by a variable Hurst exponeht(d) =1—d/4 ford<2 andH(d)=1/2 ford>2. The fBm becomes marginal at
d=2. Moreover, using the known first-passage properties of fBm we prove analytically that the disorder
averaged persisten¢the probability of no zero crossing of the procegs) up to timet], has a power-law
decay for larget with an exponen®#=d/4 for d<2 and §=1/2 for d=2 (with logarithmic correction ad
=2), results that were earlier derived by Redner based on heuristic arguments and supported by numerical

simulations[S. Redner, Phys. Rev. &, 4967(1997)].
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The Matheron—de MarsilyMdM) model, originally in-

purely Brownian along the transvergélirection. In contrast,

particle in a given timé. This generates a typical bias in the
x direction giving rise to a superdiffusive longitudinal trans-
port: \(x?(t))~t3* for larget [2-5].

While the transport properties in the MdM model are by

now well understood, the first-passage properties are much

less obvioud4,6]. The first-passage property of a particle
diffusing in a random medium is a subject of long standing
interest[3,7]. Quite generally, the first-passage probability
F(t) is simply the distribution of the time when a particle
first crosses a given point in space. The persisté&{¢g, on

the other hand, is the probability that the particle does not

cross a given point up to time The two probabilities are
simply relatedf (t) = —dP(t)/dt [7]. The calculation of the
persistenceP(t) is nontrivial even in pure systems without
disorder. There have been tremendous theoretical and expe

mental activities over the last decade to understand the per

sistence properties in nonequilibrium systems without
quenched disordel8]. Not surprisingly, the persistence in
disordered systems is even harder to understand. The on
dimensional Sinai moddR], where a particle diffuses in a
random potential that itself is the trace of a random walk in

space, is perhaps the only model with quenched disorder fo
which the persistence properties are understood analytically

[10,11]. It is, therefore, important to find other models with

model seems to be a likely candidate for this purpose.
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The persistence properties in the MdM model were first
troduced to study the hydrodynamic dispersion of a tracestudied by Rednef4,6]. Perhaps the simplest question is:
particle in porous rock$l], provides perhaps the simplest What is the probabilityP(t) that the particle does not recross
setting where anomalous superdiffusion arises due to lonthey axis up to timet, starting initially atx(t=0)=07? This
range correlations generated dynamically by the process iis equivalent to restricting the particle in the semi-infinite
self. In the MdM model a single particle diffuses in a (1 geometry §>0) with an absorbing boundary condition at
+1)-dimensional layered medium with one transverse and=0 andP(t) then represents the survival probability of the
one longitudinal direction. The motion of the particle is particle[7]. The probabilityP(t), of course, varies from one
realization of the velocity field to another. Redner argued
along the longitudinak direction the particle is driven by a physically, supported by numerical simulations, that the dis-
drift velocity v(y) that is a random function of only the order averaged survival probabilii(t) decays as a power
transverse coordinate(see Fig. 1 Even though the veloci- |aw for larget, P(t)~t~Y*[6]. Extension of this argument to
ties of different layers in the MdM model are uncorrelated,5 (d-+ 1)-dimensional generalization of the MdM model
the motion along thex direction gets correlated in time due (wjth d transverse directions and one longitudinal direction
to the multiple visits to the same transverse layer by thesyggests a rather rich asymptotic behay&r

t~ d/4'

P(t)~4 (Int/)¥2 d=2
t71/2,

0<d<?2

@
d>2,

indicating thatd=2 is a “critical” dimension below which
the particle survives longdcompared to the ordinary diffu-
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) : ] FIG. 1. A realization of the MdM model in (1) dimensions.
quenched disorder for which the persistence can be conFhe heavy black dot represents the particle. The velocity field, uni-
puted analytically. Given its relative simplicity, the MdM form in a row but fluctuating from row to row, is represented by the

arrows.
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sion) due to the random velocity field. The arguments usedield v[y] is quenched, i.e., for a given realization of the
by Redner in deriving these asymptotic results, though physifunction v, one first evolvex(t) by Eg. (4) and then one
cally intuitive, are heuristic. Hence, a rigorous derivationeeds to “disorder averagdtienoted by - -) over different
would be important and welcome. o realizations of the random functian In the original MdM
The main result of this Rapid Communication is to Showmqagel in (1+1) dimensions, the random functiar(y) is
that the stochastic proces§t), representing the longitudinal considered to be a Gaussian with zero m@:O and a
coordinate of th_e part_lcle in thed (- 1_)-d|men5|0n_al MdM_ correlator v (y1)v(ys) = 8(y1—y,). In the generalized d
r?é)del,_ cand be édgntllcled daslba fracgonal ﬁro;glan (;n_ot|on+ 1)-dimensional version considered here, we still choose
(fBm) mtrp uced by Mandelbrot and van Nefk?] and is v[y] to be a zero mean Gaussian function, but with a short-
characterized by a Hurst expondr{d) that depends only ranged correlator
on the dimension. This result shows that the MdM model !
provides a physical realization of a fBm with a varialotsy
varying the dimensiod in the MdM mode] Hurst exponent.
This connection to fBm also allows us to prove the
asymptotic results in Eq1) by using a known result for the
first-passage probability of fBm. The cutoffa in Eq. (5) represents the correlation length of
For later purposes it is useful to summarize the definitionthe velocity field in the transverse directions. Physically, this
and the known first-passage properties of a fBm. A stochastigimics the fact that the velocity layers have a finite thick-
proces(t) (with zero mearE [x(t)]=0) is called a fBmif  ness of lengtha. For d<2, one can safely take the limét
its incremental two-time correlation functior€(t;,t;) -0 and recover thes correlated disorder of the original
=E[(x(t1) —X(t))?] is stationary i.e., depends only on the MdM model. However, a nonzero cutoff is necessary dor
difference|t, —t,| and moreover, grows asymptotically as a >2 in order that the MdM model in continuum space is well
power law, defined. The physical reason for this nonzero cutoff is due to
oH the fact that ind>2, apoint Brownian particle never meets
Clty,t)~[ti—to|*", |ty —to[>1. (2)  another fixedpoint in space. The events, where two point
particles meet, constitute a set of measure zero. Hence, to

The para_meter @H<1 is called the Hurst exponent that gy physically meaningful results, it is necessary to have a
characterizes the fBifiL.2] andE[ - - -] denotes the expecta- fnite size for either of the particles id>2. In the present

tion value over all realizations of the process. For examplecontext, it means that theoint particle in our model will feel

the velocity fields in thed transverse layers provided the
fayers have a nonzero thickness. The choice of a Gaussian
> Y function in Eg.(5) just makes the subsequent calculations
that the probability that a fBm does not cross zero up to tim asier, but in principle one can choose any short-ranged

-0 H _
t has a power-law decafp(t)~t " for larget with 6=1 ¢, tion in Eq.(5). The exponend turns out to be indepen-
—H [15,16. Note that the resulé=1—H does not require  yant of this choice.

the procesx(t) to be Gaussian and holds for any zero mean Integrating Eq.(4) we get,

process that satisfies EqR). Our strategy, in this paper,

would be to first establish that the transverse coordiréte ¢ ¢

of the particle in a §+1)-dimensional MdM model indeed x(t)zf &( T)d7-+f v[y(7)]dr, (6)

satisfies Eq(2) with a Hurst exponeniti(d), and then to use 0 0

the known fBm resul(d) =1—H(d) to prove the results in

Eq. (2). where we have assume@0)=0. In order to relate the pro-
In the (d+ 1)-dimensional MdM model considered here, cessx(t) in Eq. (6) to a fBm, all we need is to compute the

the d>0 transverse coordinates of the particle, denoted bexpectation valueE[ (x(t;) —X(t,))?], whereE denotes an

yi(t)'s with i=1,2, ... d, undergo ordinary Brownian mo- average over all realizations ®{t), arising from the thermal

(Y1—Y2)?

PR — 1
v[y1lvly2]= WGXF{— Sda? 6)

[13-14 and it is known, both analytically and numerically,

tion, noises as well as the disorder, i.E[,---]=(---)=(---).
. Clearly, from Eqg. (6) one gets E[x(t)]=0. Using
vi=ni(1), (B (&(t1)&(ty))=8(t,—t,), one gets from Eq(6),

where »;’s are standard zero mean Gaussian white noises E[x(t)X(ty)]=min(ty,t,) +1(ty,t,) )

with correlators(7;(t) ;(t"))= & j6(t—t"). The longitudi-
nal coordinatex(t), in contrast, is driven by a random drift
v[y(t)] that depends only on the transverse coordinate

y(t) ={yi(t)},

¥vhere|(t1,t2) is given by

t [t
x=v[y()]+£(1), @ '(tl’tz)=fo fo (u[y(r)Jvly(r2))d7ydr,

where&(t) is again ad correlated zero mean Gaussian white _ aftlft2<e—[y(Tl)—y(Tz)]zxzda2>dT dr (8)
noise and is uncorrelated to the noisgét)’s. The velocity o Jo e
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C(ty,tp) =At;—t,| +2B[([t; —t,| +a%)F—a®f]. (19

has been used in going from the first to the second line in Eq.

(8). By integrating Eq(3), it follows that the vector

T

Yi=yi<n>—yi<rz>=f Cpi(r)dr ©

72

is a Gaussian random variable singgs are Gaussian. The

vector Y has zero mean{Y)=0 and a varianceY?)
=d|r,— 7|, computed easily from Eq9) using the prop-
erty  (ni(71) 9(72))=6;; (71— 7). The quantity

(e~ Y*12d2%) that appears inside the integral on the right han
side of EQ.(8), can then be evaluated using the explicit

Gaussian form of the distribution
P(Y)=[27d|,— 75| ]~ Y%exd — Y?/2d| r,— 75|], (10)
and we get

d’Tld T

t1 (to
= 2ma) | e e

11
Fortunately, the double integral in E(L1) can be explicitly
performed. Using this explicit form in Eq7) we get, for all
t,=0, t,=0 andd#2,4,
E[X(t1)X(t,)]=Amin(ty,t,)+B[(t;+a%)P+(t,+a?)?
—(Jty—t,| +a?)F—a?#], (12

where B=(4—d)/2, A=1—4a?"92xd) %) (2—d), and
B=4(27d) ¥%(2—d)(4—d). In the limit d—4, B di-
verges butB—0, and the second term in E(L2) just be-

Thus, in the limit|t;—t,|>1, the functionC(t,,t,) again

has two different asymptotic behaviors depending on
whetherd<2 or d>2. In the former case, sinc8=(4
—d)/2>1, one gets, C(t;,t,)~2B|t;—t,|? for large
[t,—1t,|. As in the case of the variance in E4.3), the cutoff

a does not play any significant role fat<2 and one can
take safely the limia—0 in Eq.(14). The incremental cor-
relator is thus stationary, and moreover, grows as a power
law for large|t;—t,| as in Eq.(2). This proves that fod

=2 the longitudinal displacemer(t) of the particle is in-

deed a fBm with a Hurst exponer,(d)=B/2=1—d/4. In
the complementary cas#>2, the first term on the right-
hand side of Eq(14) dominates for largét, —t,| and one
getsC(t;,ty)~Alt; —t,| with A>0. Once again, as in Eq.
(13), A depends explicitly on the cutof (and diverges as
a—0) and it is necessary to retain a nonzero cuo#0 for
d>2. With a finite cutoffC(t,,t,) again has the fBm form
as in Eq.(2) with a Hurst exponenH(d)=1/2 for all d
>2. This indicates that(t) asymptotically becomes an or-
dinary Brownian motion(or fBm with H=1/2) for all d
>2. This shows that for altl# 2, the longitudinal coordi-
natex(t) of the particle is a fBm with a Hurst exponent,

d
- — <2
1 T d
H(d)= 1 (15
- d>2.
2

It then follows immediately from the known first-passage
property of fBm mentioned earlier that the probability that

comes a logarithm, but stays finite. The other marginal casi® Proces(t) does not cross zero up to tinbelecays as a

d=2 will be discussed later. Note that whikis indepen-
dent of the cutoffa, A depends explicitly ora.

power lawP(t)~t~ ¢ with #=1—H. Using the results foH
in Eq. (15), we getd=d/4 for 0<d<2 and #=1/2 ford

Puttingt,=t,=t in Eq. (12), we get the results for the >2, thus proving the results in E{l) for d# 2.

variance in the longitudinal coordinate of the particle for all

t=0,

E[x%(t)]=At+2B[(t+a?)#—a?’]. (13

This result in Eq.(13) clearly emphasizes the role of the

cutoff a and the critical dimensiord=2. For d<2 or
equivalentlyB=(4—d)/2>1, it follows from Eqg.(13) that

In the marginal cas&l=2, one can again evaluate the
integral I (t1,t5) in Eq. (11) explicitly. Substitution of this
form in Eq.(7) gives for allt;,t,=0,

E[X(t;)X(ty)]=A" min(ty,t,)+B'[(t;+a?)In(t;+a?)
+(t,+a?)In(t,+a?) —a?ln(a?)

—(Jti—to|+a?)In(|t;—t,|+a?)],  (16)

for larget the second term on the right-hand side dominates,

giving rise to a superdiffusiorE[x?(t)]~2Bt* 92, The

whereA’ =1—In(a’e)/27 andB’ = 1/47. Fort;=t,=t, one

cutoff a plays no role ford<2 and in fact, one can safely gets from Eq.(16) the exact result for the variance for &ll

take the limita—0 in Eq. (13) for d<2. In contrast, fod

>2 (B=(4—d)/2<1), the first term on the right-hand side
of Eq. (13) dominates for largeé and one gets ordinary dif-

fusion, E[x?(t)]~At where A=1—4a%"42md)~9?(2
—d)>0 depends explicitly on the cut-off. In fact, A di-

verges in the limia—0. Thus, to get a physically meaning-

ful result, it is necessary to have a finite nonzero cuadffr
d>2.

The incremental two-time correlation functidd(t;,t»)
=E[(x(t;) —X(t,))?] can be computed from E¢12) for all
t1,1,=0,

E[x%(t)]=A't+2B'[(t+a?)In(t+a%) —a?%In(a?)].
17

Thus, asymptotically for largg the longitudinal motion for
d=2 is super-diffusive, but only marginallyE[x3(t)]
~2B’tIn(t). One can easily compute the incremental two-
time correlatoiC(ty,t,) = E[(x(t;) —x(t,))?] from Eq.(16),

C(ty,t) =A’[t;—to| +2B'[(Jty—t5| +a?)In(|t; — t,]

+a?)—a?ln(a?)]. (19
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Evidently, this correlator is stationary and fies—t,/>1, it ~ Gaussian interface to a fixed stationary configurafitl, a
has a power-law(with logarithmic correction dependence result which was subsequently verified in experiments on
on its argument as in Eq2) with H=1/2. Thus, ford=2, step edge fluctuations in Al/&il1) surface[17]. In this pa-
the longitudinal motiorx(t) of the particle is a marginal fBm per, we have shown that the same connection is useful in

with H=1/2. The analytical arguments leading to the persiscalculating the first-passage properties in a model with
tence exponen=1—H for fBm [15,16 can be easily quenched disorder. Given that this technique is useful in two

modified to deal with the marginal case. This givieét) ﬁgse rhgfiﬁzthF:,f,?(?el?rpus{hfengp%ﬁ?ﬁtjn?at this method per-
~/In(t)/t for larget, thus recovering the result in E€L) for This paper has dealt with the persistence airegle par-
d=2. _ticle in the MdM velocity field. It would be interesting to

In summary, we were able to show exactly that the longi-gyiend this study to a system diteracting particles. A
tudinal positionx(t) of a particle in a ¢+ 1)—dimensional simple physical example of such a system is a single poly-
MdM model can be represented as a fBm with a Hurst €xier chain within the Rouse model where the beads on the
ponentH(d) that varies with the dimensiod of the MdM  chain are connected by harmonic sprifig8]. The transport
model. Moreover, this exact connection allows us to use th‘faroperties of a Rouse chain in the presence of a MdM veloc-
known first-passage results for the fBm and derive analyti-,ty field have been well studied in the literatte9—21. The
cally the asymptotic results for the disorder averaged SUltechniques presented in this paper may be extended to study
vival probability in the MdM model that were known before o persistence properties in a Rouse chain advected by a
only via heuristic arguments and numerical simulatif®s  \gm velocity field [22].
This method of connecting to fBm and the subsequent usage
of the first-passage results for the fBm was first used to cal- Itis a pleasure to thank S. Redner, P.L. Krapivsky, and A.
culate exactly the first-return exponent of a fluctuatingComtet for useful conversations.
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