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Persistence of a particle in the Matheron–de Marsily velocity field

Satya N. Majumdar
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~Received 24 July 2003; published 3 November 2003!

We show that the longitudinal positionx(t) of a particle in a (d11)-dimensional layered random velocity
field ~the Matheron–de Marsily model! can be identified as a fractional Brownian motion~fBm! characterized
by a variable Hurst exponentH(d)512d/4 for d,2 andH(d)51/2 for d.2. The fBm becomes marginal at
d52. Moreover, using the known first-passage properties of fBm we prove analytically that the disorder
averaged persistence@the probability of no zero crossing of the processx(t) up to timet], has a power-law
decay for larget with an exponentu5d/4 for d,2 andu51/2 for d>2 ~with logarithmic correction atd
52), results that were earlier derived by Redner based on heuristic arguments and supported by numerical
simulations@S. Redner, Phys. Rev. E56, 4967~1997!#.
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The Matheron–de Marsily~MdM! model, originally in-
troduced to study the hydrodynamic dispersion of a tra
particle in porous rocks@1#, provides perhaps the simple
setting where anomalous superdiffusion arises due to l
range correlations generated dynamically by the proces
self. In the MdM model a single particle diffuses in a (
11)-dimensional layered medium with one transverse
one longitudinal direction. The motion of the particle
purely Brownian along the transversey direction. In contrast,
along the longitudinalx direction the particle is driven by a
drift velocity v(y) that is a random function of only th
transverse coordinatey ~see Fig. 1!. Even though the veloci-
ties of different layers in the MdM model are uncorrelate
the motion along thex direction gets correlated in time du
to the multiple visits to the same transverse layer by
particle in a given timet. This generates a typical bias in th
x direction giving rise to a superdiffusive longitudinal tran
port: A^x2(t)&;t3/4 for large t @2–5#.

While the transport properties in the MdM model are
now well understood, the first-passage properties are m
less obvious@4,6#. The first-passage property of a partic
diffusing in a random medium is a subject of long stand
interest @3,7#. Quite generally, the first-passage probabil
F(t) is simply the distribution of the time when a partic
first crosses a given point in space. The persistenceP(t), on
the other hand, is the probability that the particle does
cross a given point up to timet. The two probabilities are
simply related:F(t)52dP(t)/dt @7#. The calculation of the
persistenceP(t) is nontrivial even in pure systems withou
disorder. There have been tremendous theoretical and ex
mental activities over the last decade to understand the
sistence properties in nonequilibrium systems with
quenched disorder@8#. Not surprisingly, the persistence i
disordered systems is even harder to understand. The
dimensional Sinai model@9#, where a particle diffuses in a
random potential that itself is the trace of a random walk
space, is perhaps the only model with quenched disorde
which the persistence properties are understood analytic
@10,11#. It is, therefore, important to find other models wi
quenched disorder for which the persistence can be c
puted analytically. Given its relative simplicity, the MdM
model seems to be a likely candidate for this purpose.
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The persistence properties in the MdM model were fi
studied by Redner@4,6#. Perhaps the simplest question i
What is the probabilityP(t) that the particle does not recros
the y axis up to timet, starting initially atx(t50)50? This
is equivalent to restricting the particle in the semi-infin
geometry (x.0) with an absorbing boundary condition
x50 andP(t) then represents the survival probability of th
particle@7#. The probabilityP(t), of course, varies from one
realization of the velocity field to another. Redner argu
physically, supported by numerical simulations, that the d
order averaged survival probabilityP(t) decays as a powe
law for larget, P(t);t21/4 @6#. Extension of this argument to
a (d11)-dimensional generalization of the MdM mod
~with d transverse directions and one longitudinal directio!
suggests a rather rich asymptotic behavior@6#,

P~ t !;H t2d/4, 0,d,2

~ ln t/t !1/2, d52

t21/2, d.2,

~1!

indicating thatd52 is a ‘‘critical’’ dimension below which
the particle survives longer~compared to the ordinary diffu

x

y
v

FIG. 1. A realization of the MdM model in (111) dimensions.
The heavy black dot represents the particle. The velocity field, u
form in a row but fluctuating from row to row, is represented by t
arrows.
©2003 The American Physical Society01-1



e
ys
on

w
l

on

l

he

io
s

e
a

t
-
ple

fo
y,
m

a
,

e,
b

-

ise

ft
te

ite

e

se
ort-

of
his
k-

l

ell
to

s
nt
, to
e a

e
sian
ns
ged
-

-
e

RAPID COMMUNICATIONS

SATYA N. MAJUMDAR PHYSICAL REVIEW E 68, 050101~R! ~2003!
sion! due to the random velocity field. The arguments us
by Redner in deriving these asymptotic results, though ph
cally intuitive, are heuristic. Hence, a rigorous derivati
would be important and welcome.

The main result of this Rapid Communication is to sho
that the stochastic processx(t), representing the longitudina
coordinate of the particle in the (d11)-dimensional MdM
model, can be identified as a fractional Brownian moti
~fBm! introduced by Mandelbrot and van Ness@12# and is
characterized by a Hurst exponentH(d) that depends only
on the dimensiond. This result shows that the MdM mode
provides a physical realization of a fBm with a variable~by
varying the dimensiond in the MdM model! Hurst exponent.
This connection to fBm also allows us to prove t
asymptotic results in Eq.~1! by using a known result for the
first-passage probability of fBm.

For later purposes it is useful to summarize the definit
and the known first-passage properties of a fBm. A stocha
processx(t) ~with zero meanE @x(t)#50) is called a fBm if
its incremental two-time correlation functionC(t1 ,t2)
5E@„x(t1)2x(t2)…2# is stationary, i.e., depends only on th
differenceut12t2u and moreover, grows asymptotically as
power law,

C~ t1 ,t2!;ut12t2u2H, ut12t2u@1. ~2!

The parameter 0,H,1 is called the Hurst exponent tha
characterizes the fBm@12# andE@•••# denotes the expecta
tion value over all realizations of the process. For exam
the ordinary Brownian motion is a fBm withH51/2. The
zero crossing properties of fBm have been studied be
@13–16# and it is known, both analytically and numericall
that the probability that a fBm does not cross zero up to ti
t has a power-law decayP(t);t2u for large t with u51
2H @15,16#. Note that the resultu512H does not require
the processx(t) to be Gaussian and holds for any zero me
process that satisfies Eq.~2!. Our strategy, in this paper
would be to first establish that the transverse coordinatex(t)
of the particle in a (d11)-dimensional MdM model indeed
satisfies Eq.~2! with a Hurst exponentH(d), and then to use
the known fBm resultu(d)512H(d) to prove the results in
Eq. ~1!.

In the (d11)-dimensional MdM model considered her
the d.0 transverse coordinates of the particle, denoted
yi(t)’s with i 51,2, . . . ,d, undergo ordinary Brownian mo
tion,

ẏi5h i~ t !, ~3!

where h i ’s are standard zero mean Gaussian white no
with correlatorŝ h i(t)h j (t8)&5d i , jd(t2t8). The longitudi-
nal coordinatex(t), in contrast, is driven by a random dri
v@y(t)# that depends only on the transverse coordina
y(t)5$yi(t)%,

ẋ5v@y~ t !#1j~ t !, ~4!

wherej(t) is again ad correlated zero mean Gaussian wh
noise and is uncorrelated to the noisesh i(t)’s. The velocity
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field v@y# is quenched, i.e., for a given realization of th
function v, one first evolvesx(t) by Eq. ~4! and then one
needs to ‘‘disorder average’’~denoted by•••) over different
realizations of the random functionv. In the original MdM
model in (111) dimensions, the random functionv(y) is
considered to be a Gaussian with zero mean,v(y)50 and a
correlator v(y1)v(y2)5d(y12y2). In the generalized (d
11)-dimensional version considered here, we still choo
v@y# to be a zero mean Gaussian function, but with a sh
ranged correlator,

v@y1#v@y2#5
1

@2pda2#d/2expF2
~y12y2!2

2da2 G . ~5!

The cutoff a in Eq. ~5! represents the correlation length
the velocity field in the transverse directions. Physically, t
mimics the fact that the velocity layers have a finite thic
ness of lengtha. For d,2, one can safely take the limita
→0 and recover thed correlated disorder of the origina
MdM model. However, a nonzero cutoff is necessary ford
.2 in order that the MdM model in continuum space is w
defined. The physical reason for this nonzero cutoff is due
the fact that ind.2, apoint Brownian particle never meet
another fixedpoint in space. The events, where two poi
particles meet, constitute a set of measure zero. Hence
obtain physically meaningful results, it is necessary to hav
finite size for either of the particles ind.2. In the present
context, it means that thepoint particle in our model will feel
the velocity fields in thed transverse layers provided th
layers have a nonzero thickness. The choice of a Gaus
function in Eq. ~5! just makes the subsequent calculatio
easier, but in principle one can choose any short-ran
function in Eq.~5!. The exponentu turns out to be indepen
dent of this choice.

Integrating Eq.~4! we get,

x~ t !5E
0

t

j~t!dt1E
0

t

v@y~t!#dt, ~6!

where we have assumedx(0)50. In order to relate the pro
cessx(t) in Eq. ~6! to a fBm, all we need is to compute th
expectation valueE@(x(t1)2x(t2))2#, whereE denotes an
average over all realizations ofx(t), arising from the thermal
noises as well as the disorder, i.e.,E@•••#[^•••&5^•••&.
Clearly, from Eq. ~6! one gets E@x(t)#50. Using
^j(t1)j(t2)&5d(t12t2), one gets from Eq.~6!,

E @x~ t1!x~ t2!#5min~ t1 ,t2!1I ~ t1 ,t2!, ~7!

whereI (t1 ,t2) is given by

I ~ t1 ,t2!5E
0

t1E
0

t2
^v@y~t1!#v@y~t2!#&dt1dt2

5aE
0

t1E
0

t2
^e2[y(t1)2y(t2)] 2/2da2

&dt1dt2 , ~8!
1-2
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with a5@2pda2#2d/2. The Gaussian correlator in Eq.~5!
has been used in going from the first to the second line in
~8!. By integrating Eq.~3!, it follows that the vector

Yi5yi~t1!2yi~t2!5E
t2

t1
h i~t!dt ~9!

is a Gaussian random variable sinceh i ’s are Gaussian. The
vector Y has zero mean,̂ Y&50 and a variancê Y2&
5dut12t2u, computed easily from Eq.~9! using the prop-
erty ^h i(t1)h j (t2)&5d i j d(t12t2). The quantity

^e2Y2/2da2
&, that appears inside the integral on the right ha

side of Eq. ~8!, can then be evaluated using the expli
Gaussian form of the distribution

P~Y!5@2pdut12t2u#2d/2exp@2Y2/2dut12t2u#, ~10!

and we get

I ~ t1 ,t2!5@2pd#2d/2E
0

t1E
0

t2 dt1dt2

@ ut12t2u1a2#d/2. ~11!

Fortunately, the double integral in Eq.~11! can be explicitly
performed. Using this explicit form in Eq.~7! we get, for all
t1>0, t2>0 anddÞ2,4,

E@x~ t1!x~ t2!#5A min~ t1 ,t2!1B@~ t11a2!b1~ t21a2!b

2~ ut12t2u1a2!b2a2b#, ~12!

where b5(42d)/2, A5124a22d(2pd)2d/2/(22d), and
B54(2pd)2d/2/(22d)(42d). In the limit d→4, B di-
verges butb→0, and the second term in Eq.~12! just be-
comes a logarithm, but stays finite. The other marginal c
d52 will be discussed later. Note that whileB is indepen-
dent of the cutoffa, A depends explicitly ona.

Putting t15t25t in Eq. ~12!, we get the results for the
variance in the longitudinal coordinate of the particle for
t>0,

E@x2~ t !#5At12B@~ t1a2!b2a2b#. ~13!

This result in Eq.~13! clearly emphasizes the role of th
cutoff a and the critical dimensiond52. For d,2 or
equivalentlyb5(42d)/2.1, it follows from Eq.~13! that
for larget the second term on the right-hand side domina
giving rise to a superdiffusionE@x2(t)#'2Bt(42d)/2. The
cutoff a plays no role ford,2 and in fact, one can safel
take the limita→0 in Eq. ~13! for d,2. In contrast, ford
.2 „b5(42d)/2,1…, the first term on the right-hand sid
of Eq. ~13! dominates for larget and one gets ordinary dif
fusion, E@x2(t)#'At where A5124a22d(2pd)2d/2/(2
2d).0 depends explicitly on the cut-offa. In fact, A di-
verges in the limita→0. Thus, to get a physically meaning
ful result, it is necessary to have a finite nonzero cutoffa for
d.2.

The incremental two-time correlation functionC(t1 ,t2)
5E@„x(t1)2x(t2)…2# can be computed from Eq.~12! for all
t1 ,t2>0,
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C~ t1 ,t2!5Aut12t2u12B@~ ut12t2u1a2!b2a2b#. ~14!

Thus, in the limit ut12t2u@1, the functionC(t1 ,t2) again
has two different asymptotic behaviors depending
whether d,2 or d.2. In the former case, sinceb5(4
2d)/2.1, one gets, C(t1 ,t2)'2But12t2ub for large
ut12t2u. As in the case of the variance in Eq.~13!, the cutoff
a does not play any significant role ford,2 and one can
take safely the limita→0 in Eq. ~14!. The incremental cor-
relator is thus stationary, and moreover, grows as a po
law for large ut12t2u as in Eq.~2!. This proves that ford
,2, the longitudinal displacementx(t) of the particle is in-
deed a fBm with a Hurst exponent,H(d)5b/2512d/4. In
the complementary cased.2, the first term on the right-
hand side of Eq.~14! dominates for largeut12t2u and one
getsC(t1 ,t2)'Aut12t2u with A.0. Once again, as in Eq
~13!, A depends explicitly on the cutoffa ~and diverges as
a→0) and it is necessary to retain a nonzero cutoffa.0 for
d.2. With a finite cutoffC(t1 ,t2) again has the fBm form
as in Eq. ~2! with a Hurst exponentH(d)51/2 for all d
.2. This indicates thatx(t) asymptotically becomes an or
dinary Brownian motion~or fBm with H51/2) for all d
.2. This shows that for alldÞ2, the longitudinal coordi-
natex(t) of the particle is a fBm with a Hurst exponent,

H~d!5H 12
d

4
, d,2

1

2
, d.2.

~15!

It then follows immediately from the known first-passa
property of fBm mentioned earlier that the probability th
the processx(t) does not cross zero up to timet decays as a
power lawP(t);t2u with u512H. Using the results forH
in Eq. ~15!, we getu5d/4 for 0,d,2 andu51/2 for d
.2, thus proving the results in Eq.~1! for dÞ2.

In the marginal cased52, one can again evaluate th
integral I (t1 ,t2) in Eq. ~11! explicitly. Substitution of this
form in Eq. ~7! gives for all t1 ,t2>0,

E@x~ t1!x~ t2!#5A8 min~ t1 ,t2!1B8@~ t11a2!ln~ t11a2!

1~ t21a2!ln~ t21a2!2a2ln~a2!

2~ ut12t2u1a2!ln~ ut12t2u1a2!#, ~16!

whereA8512 ln(a2e)/2p andB851/4p. For t15t25t, one
gets from Eq.~16! the exact result for the variance for allt,

E@x2~ t !#5A8t12B8@~ t1a2!ln~ t1a2!2a2ln~a2!#.
~17!

Thus, asymptotically for larget, the longitudinal motion for
d52 is super-diffusive, but only marginallyE@x2(t)#
'2B8t ln(t). One can easily compute the incremental tw
time correlatorC(t1 ,t2)5E@(x(t1)2x(t2))2# from Eq.~16!,

C~ t1 ,t2!5A8ut12t2u12B8@~ ut12t2u1a2!ln~ ut12t2u

1a2!2a2ln~a2!#. ~18!
1-3
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Evidently, this correlator is stationary and forut12t2u@1, it
has a power-law~with logarithmic correction! dependence
on its argument as in Eq.~2! with H51/2. Thus, ford52,
the longitudinal motionx(t) of the particle is a marginal fBm
with H51/2. The analytical arguments leading to the pers
tence exponentu512H for fBm @15,16# can be easily
modified to deal with the marginal case. This givesP̄(t)
;Aln(t)/t for larget, thus recovering the result in Eq.~1! for
d52.

In summary, we were able to show exactly that the lon
tudinal positionx(t) of a particle in a (d11)-dimensional
MdM model can be represented as a fBm with a Hurst
ponentH(d) that varies with the dimensiond of the MdM
model. Moreover, this exact connection allows us to use
known first-passage results for the fBm and derive anal
cally the asymptotic results for the disorder averaged s
vival probability in the MdM model that were known befor
only via heuristic arguments and numerical simulations@6#.
This method of connecting to fBm and the subsequent us
of the first-passage results for the fBm was first used to
culate exactly the first-return exponent of a fluctuati
e

ur
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Gaussian interface to a fixed stationary configuration@16#, a
result which was subsequently verified in experiments
step edge fluctuations in Al/Si~111! surface@17#. In this pa-
per, we have shown that the same connection is usefu
calculating the first-passage properties in a model w
quenched disorder. Given that this technique is useful in
rather different problems, one expects that this method
haps has much wider future applications.

This paper has dealt with the persistence of asinglepar-
ticle in the MdM velocity field. It would be interesting to
extend this study to a system ofinteracting particles. A
simple physical example of such a system is a single po
mer chain within the Rouse model where the beads on
chain are connected by harmonic springs@18#. The transport
properties of a Rouse chain in the presence of a MdM ve
ity field have been well studied in the literature@19–21#. The
techniques presented in this paper may be extended to s
the persistence properties in a Rouse chain advected
MdM velocity field @22#.

It is a pleasure to thank S. Redner, P.L. Krapivsky, and
Comtet for useful conversations.
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