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Persistence with Partial Survival
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We introduce a parameterp called partial survival in the persistence of stochastic processes and
that for smooth processes the persistence exponentuspd changes continuously withp, us0d being the
usual persistence exponent. We computeuspd exactly for a one-dimensional deterministic coarsen
model, and approximately for the diffusion equation. Finally we develop an exact, systematic
expansion foruspd, in powers ofe ­ 1 2 p, for a general Gaussian process with finite density of z
crossings. [S0031-9007(98)07216-0]
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Recently considerable theoretical and experime
effort has been devoted to understanding first-pass
statistics in nonequilibrium systems. These include
Ising, Potts, and time-dependent deterministic Ginzbu
Landau (TDGL) models undergoing zero-temperat
phase-ordering dynamics [1–4], the diffusion equat
with random initial conditions [5,6], the global mag
netization undergoing critical dynamics [7], seve
reaction-diffusion systems [8], fluctuating interfaces [
and a randomly accelerated particle [10]. Typically one
interested in “persistence,” i.e., the probabilityP0std that,
at a fixed point in space, the stochastic process (such a
Ising spin or the diffusion field) does not change sign up
time t. In the examples mentioned previously, this pro
bility decays as a power for large timet, P0std , t2u ,
where the persistence exponentu is nontrivial due to the
non-Markovian nature of the process in timeat a fixed
point in space. This exponent has recently been measu
experimentally in a 2D liquid crystal system [11], an
also for 2D soap froth [12] and breath figures [13]. T
theoretical computation ofu, however, despite a few exa
and approximate results, remains a major challenge.

Even for the simple diffusion equation,≠tf ­ =2f

starting from random initial configuration, the expone
u is known only numerically and within an independe
interval approximation (IIA) [5], though there is a rece
conjecture [14] for an exactu that remains to be proved
The IIA result, though in excellent agreement with n
merical simulations, is hard to improve systematica
The central result of this Letter is to derive a systema
series expansion foru in terms of a suitable expansio
parameter. This expansion isexact order by order and
when truncated at second order already gives good re
for the diffusion equation. But this exact series expans
technique is more general and goes beyond the diffu
equation. We show that it can be applied to comp
the persistence exponent, order by order, for a w
class of stochastic processes which includes the diffu
equation, random acceleration, and the 1D TDGL mo
as special cases.
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Our result is also useful for a related problem which h
wide applications in diverse fields ranging from inform
tion theory to stock markets and oceanography. Cons
a stochastic GaussianstationaryprocessXsT d character-
ized completely by its two-time correlator,kXs0dXsT dl ­
fsT d. The processXsT d can be used to model, e.g., th
current in an electrical circuit or the price of a stoc
Given fsT d, what is the probabilityP0sT d that the sig-
nal stays above (or below) a certain level, say zero, u
time T? This problem has been studied for many ye
[15,16], and it is known that ifjfsT dj , 1yT for large
T , thenP0sT d , exps2uT d for largeT [15]. The expo-
nentu depends quite sensitively on the full functionfsT d
and is very hard to compute for generalfsT d [4]. For a
Markov process, wherefsT d ­ exps2lT d for all T , it is
known thatu ­ l [15]. However, for non-Markov pro
cesses, wherefsT d is not a pure exponential, very little i
known. Only recently a perturbation theory result foru

was developed for processes close to Markovian [4,17
The persistence problem for the diffusion equation

d dimensions can be exactly mapped to a Gaussian
tionary process, withfsT d ­ fsechsTy2dgdy2, by identi-
fying T ­ ln t andXsT d ­ fsx, tdy

p
kf2sx, tdl [5]. The

probability of no zero crossing then decays asP0sT d ,
exps2uT d ­ t2u . The series expansion technique th
we develop below can be used to computeu for arbi-
trary fsT d as long asfsT d , 1 2 aT2 1 . . . for smallT .
Such Gaussian processes are calledsmoothas they have a
finite density of zero crossings,r ­

p
2f 00s0dyp [18].

The key strategy underlying our technique is to fi
generalize the usual persistence problem by introducin
partial survival factorp as follows. The usual persistenc
say, in the diffusion equation, is the fraction of points
space where the diffusion field has not changed sign e
once up to timet. One way to compute this is to sta
with a random initial configuration of the field and p
a particle at each point in space to act as a counter.
subsequent times, whenever the field changes sign a
point, the particle there dies. The persistence is sim
the fraction of particles still surviving at timet. We now
© 1998 The American Physical Society
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generalize this by assigning the rule that whenever the
changes sign at a point, the particle there survives
probabilityp and dies with probabilitys1 2 pd. We then
compute the fraction of particles,Psp, td left after time
t. Thus,p ­ 0 corresponds to usual persistencePs0, td.
A somewhat similar generalization was recently studie
the context of “adaptive persistence” problems [19].

This generalization has several implications. It is e
to see that ifPnstd denotes the probability ofn zero
crossings in timet of the underlying single site proces
thenPsp, td is simply the generating function,

Psp, td ­
X̀
n­0

pnPnstd . (1)

For p ­ 0, Ps0, td ­ P0std, the usual persistence, deca
ing for large t as t2us0d. In the other limit,p ­ 1, the
particles always survive:Ps1, td ­ 1, implying us1d ­ 0.
It is interesting to analytically continue Eq. (1) to negat
p. In fact, for p ­ 21 this is simply the autocorrelatio
function, Ps21, td ­ Astd ­ ksgnffsx, 0dg sgnffsx, tdgl,
which decays ast2ly2, wherel is a well-studied expo
nent in phase-ordering systems [20]. In fact, we show
low that for smooth processes,Psp, td , t2uspd for large
t where the exponentuspd depends continuously onp as
p varies from21 to 11. Moreover, the quantityApstd ­
Ps2p, tdyPsp, td is just the autocorrelation function ave
aged only over points with surviving particles, when
survival probability isp. So if Apstd , t2lp , we have
lp ­ us2pd 2 uspd. This generalization thus puts bo
the autocorrelation and the persistence exponents as m
bers of a wider family of exponents.

We first establish the continuous dependence ofuspd
on p for smooth processes by computinguspd exactly
for a non-Gaussian process, namely, the 1D determin
TDGL model, and then approximately within IIA for th
diffusion equation. We then proceed to computeuspd
for any smooth Gaussian stationary process by expan
aroundp ­ 1. This series expansion result foruspd in
powers ofe ­ 1 2 p is exact order by order.

If a system, such as the Ising model, is quenched f
a high-temperature disordered phase to zero tempera
domains of “up” and “down” phases form and grow w
time. The evolution of the order-parameter fieldf can
be modeled by the deterministic TDGL equation,≠tf ­
=2f 2 V 0sfd, whereV sfd is a symmetric double we
potential with minima atf ­ 61. In 1D, at late times
the system breaks up into alternate up and down dom
and coarsens by successively eliminating the bounda
of the smallest domain, i.e., by flipping the signs off

simultaneously at all points inside the smallest dom
[21]. The density of persistent, or “dry” parts wheref

has not changed sign then scales as,kll2us0d wherekll is
the average length of growing domains, which serve
“time” in this problem. The exponentus0d was computed
exactly by noting that the dynamics does not gene
correlations between neighboring domains [3]. We n
introduce the partial survival factorp in this dynamics.
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We start with a random distribution of intervals or d
mains and assign a particle to each point in space.
dynamics merges the smallest intervalImin with its two
neighborsI1 and I2 to make one single intervalI. The
lengthslsId and the dry partdsId (i.e., the number of live
particles in the intervalI) evolve aslsId ­ lsI1d 1 lsI2d 1

lsImind and dsId ­ dsI1d 1 dsI2d 1 pdsImind. Thus the
only difference from the calculation in Ref. [3] is th
p-dependent term in the dry part. The rest of the c
culation is similar to that in Ref. [3], and we just outlin
the method without details. One writes down the evo
tion equations for the number of intervals of lengthl and
the average dry part carried by such an interval, and
solves exactly for the associated scaling functions by t
ing Laplace transforms. Demanding that the first mome
of these scaling functions are finite gives a transcende
equation foruspd,Z `

0
dte2t t212ufs1 2 pd s1 2 t 2 e2tderstd 1

2us1 1 pdt 1 us1 2 pdt2e2rstdg ­ 0 ,

(2)

where rstd ­ 2g 2
P`

n­1s2tdnyn n!, g being Euler’s
constant. Clearly, forp ­ 1 one getsus1d ­ 0 from the
above equation as expected. Forp ­ 0, it reduces to the
equation forus0d as obtained in Ref. [3]. Forp ­ 21,
one recovers the equation forus21d ­ l of Ref. [22].
Figure 1 showsuspd as a function ofp for 21 # p # 1,
obtained by numerically solving Eq. (2).

We now turn to the diffusion equation,≠tf ­ =2f,
starting from a random initial configuration. We fir
carry out a numerical simulation to computePsp, td for
finite p following the procedures of Ref. [5]. Figure
shows the asymptotic decay ofPsp, td with t on a log-
log plot for p ­ 0 and p ­ 0.5 in 1D. Clearly the
exponents are quite different. For example, forp ­ 0,
us0d ­ 0.1207 6 0.0005 as in Ref. [5], but forp ­ 0.5,

-1	         -0.5 0 0.5 1
p

0

0.2

0.4

0.6

0.8

θ

FIG. 1. Dashed line: The exponentuspd for the 1D TDGL
model, obtained from Eq. (2). Solid lines: The IIA estimat
for uspd for the diffusion equation in (bottom to top) 1, 2, an
3 dimensions.
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FIG. 2. Time dependence of the generalized persistence p
ability, Psp, td, from numerical simulations. Circles: Th
1D diffusion equation forp ­ 0 (filled) and p ­ 0.5 (open).
Squares: The 1D Glauber model at zero temperature forp ­ 0
(filled) andp ­ 0.5 (open). The lines are guides to the eye

we find us1y2d ­ 0.0588 6 0.0005. Unfortunately we
have not been able to computeuspd exactly. However,
the IIA used in Ref. [5] to computeus0d can be easily
extended to computeuspd very accurately for allp as we
now show.

Consider the normalized processXsT d ­ fykf2l as
a function of T ­ ln t. The zero-crossing events off

are the same as those ofX, but XsT d is a stationary
Gaussian process characterized completely by its two-
correlator,fsT d ­ kXs0dXsTdl ­ fsechsTy2dgdy2. With a
nonzero survival factorp, the fraction of live particles
after time T is then Psp, T d ­

P
`
n­0 pnPnsTd and will

decay at late times as expf2uspdT g ­ t2us pd. To evalu-
ate PnsT d, the probability ofn zero crossings byX in
time T , we note that the Laplace transforms,P̃nssd ­R`

0 dT exps2sT dPnsT d, were evaluated in Ref. [5] usin
IIA, i.e., assuming that successive intervals between
crossings ofX are statistically independent. Using the
results from Ref. [5], and carrying out the sum overn,
gives P̃sp, sd. SincePsp, T d , expf2uspdT g for large
T , Psp, sd will have a simple pole ats ­ 2uspd. Using
this, we finally getuspd as a solution of the equation

1 2 p
1 1 p

­ up

s
2
d

(
1 1

2u

p

Z `

0
dT expsuT d

3 sin21fsechdy2sTy2dg

)
. (3)

The solution is plotted in Fig. 1 ford ­ 1, 2, 3. We note
in the two extreme limits,p ­ 1 and p ­ 21, the IIA
givesus1d ­ 0 andus21d ­ dy4, which are exact. Fo
intermediate values ofp, the IIA results are in excel
lent agreement with numerical simulations. For exam
for p ­ 1y2 the IIA givesuIIA ­ 0.058 230 44 . . . , com-
pared tousim ­ 0.0588 6 0.0005.

Having established the continuousp dependence o
uspd for two smooth processes, we now derive an ex
2628
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series expansion ofuspd near p ­ 1 for a general
smooth, Gaussian, stationary processXsT d, characterized
by its two-time correlatorfsT d. The basic idea is straight
forward. We start with the definition (1) ofPsp, td as a
generating function. Writingpn ­ expsn ln pd and ex-
panding the exponential, we obtain an expansion in te
of the moments ofn, the number of zero crossings:

ln Psp, T d ­
X̀
r­1

sln pdr

r!
knrlc , (4)

where knrlc are the cumulants of the moments. Usin
p ­ 1 2 e, we express the right-hand side as a series
powers ofe. SincePsp, T d is expected to decay for larg
T as expf2uspdT g, we obtain a series expansion ofuspd
by taking the limit

uspd ­ 2 lim
T!`

1
T

ln Psp, T d ­
X̀
r­1

arer . (5)

The coefficientsar ’s involve the cumulants.
Fortunately the computation of the moments ofn is

relatively straightforward, though tedious for higher m
ments. For example, the first momentknl, i.e., the
expected number of zero crossings in timeT , was
computed by Rice [18]:knl ­ T

p
2f 00s0dyp, implying

a1 ­
p

2f 00s0dyp. The second moment,kn2l, was com-
puted by Bendat [23]. Using this result and after som
algebra we have computed the coefficienta2, which al-
ready looks complicated. We just quote the final res
here (details will be published elsewhere [24]):

a2 ­
1

p2

Z `

0
fSs`d 2 SsT dgdT , (6)

whereSsT d is given by

SsT d ­

q
M2

22 2 M2
24

f1 2 f2sT dg3y2 f1 1 H tan21 Hg , (7)

with H ­ M24y
q

M2
22 2 M2

24. The Mij ’s are the cofac-
tors of the4 3 4 symmetric correlation matrixC between
4 Gaussian variablesfXs0d, ÙXs0d, XsT d, ÙXsT dg. The ele-
ments of C can easily be computed from the correl
tor fsT d. For example,C11 ­ kXs0dXs0dl ­ fs0d, C14 ­
kXs0d ÙXsT dl ­ f 0sT d, C24 ­ k ÙXs0d ÙXsT dl ­ 2f 00sT d, and
so on.

Although these expressions look complicated, in ma
cases the functionSsT d can be evaluated explicitly
and the integral fora2 can be performed analytically
For example, for 2D diffusion equation, wherefsT d ­
sechsTy2d, we get

usp ­ 1 2 ed ­
1

2p
e 1

√
1

p2 2
1

4p

!
e2 1 Ose3d .

(8)

Keeping terms up to second order and puttinge ­ 1 (in
the same spirit ase expansion in critical phenomena
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gives us0d ­ sp 1 4dy4p2 ­ 0.180 899 . . . , just 3.5%
below the simulation value,usim ­ 0.1875 6 0.0010 [5].
Note that though the IIA estimate,uIIA ­ 0.1862, is
even closer to the simulation, it cannot be improved s
tematically. The series expansion estimate, on the o
hand, can be improved systematically order by order.

We have also computed, for the first time, the th
momentkn3l for a general smooth correlatorfsT d. We
then use this to computea3. The expressions involve th
elements of a6 3 6 correlation matrix and are not pa
ticularly illuminating [24], so we skip the details her
As an example, we computed the series up to third
der for the random acceleration process,d2xydt2 ­ h

(h is a Gaussian white noise) which can be tra
formed to a Gaussian stationary process withfsT d ­
f3 exps2Ty2d 2 exps23Ty2dgy2 [5]. We find

uspd ­

p
3

2p

√
e 2

1
6

e2 1
11
72

e3 1 Ose4d

!
. (9)

Putting e ­ 1, we get to third order, us0d ­
0.271 835 775 . . . , which should be compared to i
exact value0.25 [10]. We note that the series oscillat
around the exact value0.25 as the order increases.

We note that the series expansion will fail for no
smooth Gaussian processes, whose moments of
crossings are not finite. As an example, consider o
nary Brownian motion,dxydt ­ h, which can be mappe
to a stationary Gaussian-Markov process with correla
fsT d ­ exps2Ty2d using the change of variables di
cussed before. For this process it is well known [1
that the moments of zero crossings are infinite: if
process crosses zero once, then it crosses again
itely many times immediately afterwards [25]. Th
only the n ­ 0 term contributes to the sum (1), giv
ing Psp, T d ø Ps0, T d , exps2Ty2d ­ t21y2 for large
t. Thususpd ­ 1y2 for all 0 # p , 1, except atp ­ 1
whereus1d ­ 0. Sinceuspd is discontinuous atp ­ 1,
no expansion aroundp ­ 1 is possible.

The same conclusion holds for theT ­ 0 Glauber
dynamics of the Ising model. In this case, the us
persistence exponentus0d was recently computed exact
in 1D [2] and approximately in higher dimensions [4
The exact value in 1D isus0d ­ 3y8 [2]. Even though
the spinSistd at a given sitei is no longer a Gaussia
process, it is nonsmooth nevertheless; i.e., if a spin fl
once, it usually flips many times immediately afterwar
This fact can be tested easily by computing the expon
uspd for nonzerop. In Fig. 2 we show the asymptoti
dependence ofPsp, td on t on a log-log plot forp ­ 0
and p ­ 1y2 for the 1D T ­ 0 Glauber model. In
contrast to the diffusion case, the asymptotic slopes
the same and given by0.375 6 0.002. We have checked
this fact for other values ofp, and conclude thatuspd
is independent ofp for 0 # p , 1 [26], while clearly
us1d ­ 0. Thus the p dependence ofuspd provides
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important information about the nature of the smoothn
of the underlying stochastic process.

We thank Deepak Dhar for useful discussions.
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