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Persistence with Partial Survival
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We introduce a parameter called partial survival in the persistence of stochastic processes and show
that for smooth processes the persistence expafgnt changes continuously witp, 6(0) being the
usual persistence exponent. We compiite) exactly for a one-dimensional deterministic coarsening
model, and approximately for the diffusion equation. Finally we develop an exact, systematic series
expansion fod( p), in powers ofe = 1 — p, for a general Gaussian process with finite density of zero
crossings. [S0031-9007(98)07216-0]

PACS numbers: 05.70.Ln, 05.40.+j, 82.20.—w

Recently considerable theoretical and experimental Our result is also useful for a related problem which has
effort has been devoted to understanding first-passageide applications in diverse fields ranging from informa-
statistics in nonequilibrium systems. These include theion theory to stock markets and oceanography. Consider
Ising, Potts, and time-dependent deterministic Ginzburga stochastic GaussiatationaryprocessX(T') character-
Landau (TDGL) models undergoing zero-temperaturézed completely by its two-time correlatgX (0)X(T)) =
phase-ordering dynamics [1-4], the diffusion equationf (7). The process((T) can be used to model, e.g., the
with random initial conditions [5,6], the global mag- current in an electrical circuit or the price of a stock.
netization undergoing critical dynamics [7], severalGiven f(T), what is the probabilityP(T) that the sig-
reaction-diffusion systems [8], fluctuating interfaces [9],nal stays above (or below) a certain level, say zero, up to
and a randomly accelerated particle [10]. Typically one igime T? This problem has been studied for many years
interested in “persistence,” i.e., the probabily(s) that, [15,16], and it is known that if f(T)| < 1/T for large
at a fixed point in space, the stochastic process (such as d@h thenPy(T) ~ exp(—6T) for largeT [15]. The expo-
Ising spin or the diffusion field) does not change sign up tanent® depends quite sensitively on the full functig(r’)
timer. Inthe examples mentioned previously, this proba-and is very hard to compute for geneydll’) [4]. For a
bility decays as a power for large time Py(t) ~ t~?,  Markov process, wherg(T) = exp(—AT) for all T, it is
where the persistence exponehis nontrivial due to the known thatf = A [15]. However, for non-Markov pro-
non-Markovian nature of the process in time a fixed cesses, wherg(T) is not a pure exponential, very little is
point in space This exponent has recently been measurednown. Only recently a perturbation theory result for
experimentally in a 2D liquid crystal system [11], and was developed for processes close to Markovian [4,17].
also for 2D soap froth [12] and breath figures [13]. The The persistence problem for the diffusion equation in
theoretical computation @, however, despite a few exact d dimensions can be exactly mapped to a Gaussian sta-
and approximate results, remains a major challenge. tionary process, withf(7) = [seciT/2)]%/2, by identi-

Even for the simple diffusion equatior,¢ = V2¢  fying T = Int andX(T) = ¢ (x,1)//{d2(x,1)) [5]. The
starting from random initial configuration, the exponentprobability of no zero crossing then decays RgT) ~
6 is known only numerically and within an independentexp(—67) = t~%. The series expansion technique that
interval approximation (l1A) [5], though there is a recent we develop below can be used to compétdor arbi-
conjecture [14] for an exad that remains to be proved. trary f(T) as long asf(T) ~ 1 — aT? + ... for smallT.

The IIA result, though in excellent agreement with nu-Such Gaussian processes are cadiemothas they have a
merical simulations, is hard to improve systematically.finite density of zero crossingg, = +/—f"(0)/ [18].

The central result of this Letter is to derive a systematic The key strategy underlying our technique is to first
series expansion fof in terms of a suitable expansion generalize the usual persistence problem by introducing a
parameter. This expansion é&actorder by order and partial survival factop as follows. The usual persistence,
when truncated at second order already gives good resulssy, in the diffusion equation, is the fraction of points in
for the diffusion equation. But this exact series expansiorspace where the diffusion field has not changed sign even
technique is more general and goes beyond the diffusioance up to time. One way to compute this is to start
equation. We show that it can be applied to computevith a random initial configuration of the field and put
the persistence exponent, order by order, for a wida particle at each point in space to act as a counter. At
class of stochastic processes which includes the diffusiosubsequent times, whenever the field changes sign at any
equation, random acceleration, and the 1D TDGL modepoint, the particle there dies. The persistence is simply
as special cases. the fraction of particles still surviving at time We now
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generalize this by assigning the rule that whenever the field We start with a random distribution of intervals or do-

changes sign at a point, the particle there survives witlmains and assign a particle to each point in space. The

probability p and dies with probabilityl — p). We then dynamics merges the smallest intervg|, with its two

compute the fraction of particle®(p, ) left after time neighbors/; and I, to make one single intervdl. The

t. Thus,p = 0 corresponds to usual persistene@, ). lengthsi(/) and the dry part/(/) (i.e., the number of live

A somewhat similar generalization was recently studied irparticles in the interval) evolve ad(I) = I(1}) + [(I,) +

the context of “adaptive persistence” problems [19]. I(Imin) and d(I) = d(I,) + d(I5) + pd(Imin). Thus the
This generalization has several implications. It is easynly difference from the calculation in Ref. [3] is the

to see that ifP,(r) denotes the probability ofi zero  p-dependent term in the dry part. The rest of the cal-

crossings in timeg of the underlying single site process, culation is similar to that in Ref. [3], and we just outline

thenP(p, 1) is simply the generating function, the method without details. One writes down the evolu-
o tion equations for the number of intervals of lengtand
P(p,t) = Z p'P,(1). (1) the average dry part carried by such an interval, and one
n=0

solves exactly for the associated scaling functions by tak-

For p = 0, P(0,7) = Py(r), the usual persistence, decay- ing Laplace transforms. Demanding that the first moments
ing for larger as:~?©. In the other limit,p = 1, the  of these scaling functions are finite gives a transcendental
particles always survive?(1,) = 1, implying (1) = 0.  equation ford(p),
It is interesting to analytically continue Eq. (1) to negative P
p. Infact, forp = —1 this is simply the autocorrelation f die 1771 - p)A — 1 — e e +
function, P(—1,1) = A(t) = (sgn[¢ (x,0)]sgn[¢ (x,1)]), 0
which decays as~*/2, where x is a well-studied expo- 201 + p)t + 6(1 — p)ite "] =0,
nent in phase-ordering systems [20]. In fact, we show be- 2
low that for smooth processeB( p,r) ~ t~?) for large (2)
t where the exponergt( p) depends continuously gmas  where r(t) = —y — > _,(—t)"/nn!, y being Eulers
p varies from—1to +1. Moreover, the quantity,,(r) =  constant. Clearly, fop = 1 one gets9(1) = 0 from the
P(—p,t)/P(p,t) is just the autocorrelation function aver- above equation as expected. For= 0, it reduces to the
aged only over points with surviving particles, when theequation for6(0) as obtained in Ref. [3]. Fop = —1,
survival probability isp. So if A,(t) ~ t~*, we have one recovers the equation fo—1) = A of Ref. [22].
Ap = 6(—p) — 6(p). This generalization thus puts both Figure 1 show#(p) as a function op for -1 = p =1,
the autocorrelation and the persistence exponents as mewibtained by numerically solving Eq. (2).
bers of a wider family of exponents. We now turn to the diffusion equatiord,¢ = V?¢,

We first establish the continuous dependenc#(@f)  starting from a random initial configuration. We first
on p for smooth processes by computifgp) exactly carry out a numerical simulation to compubé p, ) for
for a non-Gaussian process, namely, the 1D deterministifinite p following the procedures of Ref. [5]. Figure 2
TDGL model, and then approximately within IIA for the shows the asymptotic decay & p, r) with r on a log-
diffusion equation. We then proceed to compétey) log plot for p =0 and p = 0.5 in 1D. Clearly the
for any smooth Gaussian stationary process by expandingxponents are quite different. For example, for= 0,
aroundp = 1. This series expansion result f6(p) in  #(0) = 0.1207 = 0.0005 as in Ref. [5], but forp = 0.5,
powers ofe = 1 — p is exact order by order.

If a system, such as the Ising model, is quenched from
a high-temperature disordered phase to zero temperature, 0.8
domains of “up” and “down” phases form and grow with

time. The evolution of the order-parameter figkdcan 06 L )
be modeled by the deterministic TDGL equationg = T

VZ¢p — V'(¢), whereV(¢) is a symmetric double well >

potential with minima at$p = *1. In 1D, at late times D 04 N .

the system breaks up into alternate up and down domains I
and coarsens by successively eliminating the boundaries N
of the smallest domain, i.e., by flipping the signs @f 0.2 S
simultaneously at all points inside the smallest domain i =

[21]. The density of persistent, or “dry” parts whede 0 ‘ ! ‘ ! ‘ L
has not changed sign then scales-d# ~?© where(l) is -1 -0.5 0 0.5 1
the average length of growing domains, which serves as p

“time” in this problem. The exponem(0) was computed :
. . FIG. 1. Dashed line: The exponedfp) for the 1D TDGL
exactly by noting that the dynamics does not generat?nodel, obtained from Eg. (2). Solid lines: The IIA estimates

correlations between neighboring domains [3]. We nowor ¢(p) for the diffusion equation in (bottom to top) 1, 2, and
introduce the partial survival factgr in this dynamics. 3 dimensions.
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0 series expansion ofl(p) near p = 1 for a general
smooth, Gaussian, stationary proc&4g’), characterized
by its two-time correlatoy (7). The basic idea is straight-

-1r forward. We start with the definition (1) a?(p,) as a
= generating function. Writingp” = expnIn p) and ex-
2 oL panding the exponential, we obtain an expansion in terms
% of the moments ofi, the number of zero crossings:
* r
= np(p1) = 3 2 Gy @
r=1 r.
-4 5 where (n"). are the cumulants of the moments. Using

p = 1 — €, we express the right-hand side as a series in
In't powers ofe. SinceP(p,T) is expected to decay for large

FIG. 2. Time dependence of the generalized persistence pro%: as exp—0(p)T], we obtain a series expansion@ffp)

ability, P(p,7), from numerical simulations. Circles: The DY taking the limit

1D diffusion equation forp = 0 (filled) and p = 0.5 (open). | w

Squares: The 1D Glauber model at zero temperature fer 0 - — Iim — — r

(filled) andp = 0.5 (open). The lines are guides to the eye. 0(p) }@oo T InP(p,T) rZ=1 are . ()

The coefficients:,’s involve the cumulants.
) Fortunately the computation of the moments rofis

we find 6(1/2) = 0.0588 + 0.0005. Unfortunately we rg|atively straightforward, though tedious for higher mo-
have not been able to compuié¢p) exactly. However, ents.  For example, the first momett), i.e., the
the 1IA used in Ref. [5] to comput®(0) can be easily expected number of zero crossings in tinie was
extem:]ed to compute( p) very accurately for alp as we computed by Rice [18](n) = T+/—f"(0)/=, implying
NOW Show. . a, = +/—f"(0)/7. The second momentz?), was com-

Consider the normalized procesd(T) = ¢ /($) as puted by Bendat [23]. Using this result and after some
a function of 7' = Inz. The zero-crossing events @f  5i0ahra’we have computed the coefficient which al-
are the same as those &f but X(T) is a stationary  yeaqy looks complicated. We just quote the final result
Gaussian process characterized completely by its two-timg, o (details will be published elsewhere [24]):
correlator f(T) = (X(0)X(T)) = [sechT /2)]*/2. With a
nonzero survival factop, the fraction of live particles 1 [
after time T is thenP(p,T) = >.._, p"P,(T) and will @ = Pfo [S() = ST, (6)
decay at late times as €xpd(p)T] = ¢~ ??). To evalu-

ate P, (T), the probability ofn zero crossings by in  WheresS(Z) is given by

time 7, we note that the Laplace transformg,(s) = M3 — M,
[ dT exp(—sT)P,(T), were evaluated in Ref. [5] using ST = 5 — s L+ Htan 'H], (7)
lIA, i.e., assuming that successive intervals between zero [1 = f2(7)]

crossings ofX are statistically independent. Using these

1 — 2 2 il
results from Ref. [5], and carrying out the sum over With H = Ma/\/M3, — M3, The M;;'s are the cofac-
gives P(p,s). SinceP(p,T) ~ exd—6(p)T] for large tors of thed X 4 symmetric correlation matri€ between

this, we finally getd( p) as a solution of the equation ments of C can easily be computed from the correla-
tor f(T). For exampleCy; = (X(0)X(0)) = f(0), C14 =
_ o — £l — — !
L=p_, \ﬁ [1 20 [ i exptoT) (XOX(1) = F(T), Cus = (XOX(T)) = ~f(T), and
lL+p d m Jo So on.
N /2 Although these expressions look complicated, in many
x sin™[sectf (T/2)]}. (3) cases the functionS(T) can be evaluated explicitly

and the integral fora, can be performed analytically.

The solution is plotted in Fig. 1 fof = 1,2,3. We note For example, for 2D diffusion equation, wheféT) =

in the two extreme limitsp = 1 and p = —1, the IIA

givesd(1) = 0 andd(—1) = d/4, which are exact. For sechT/2), we get

intermediate values op, the IIA results are in excel- 1 1 1), 3
lent agreement with numerical simulations. For example, ¢(? =1 = €) = Py gl o O(e).
for p = 1/2 the lIA givesfi;ao = 0.05823044 ..., com- (8)

pared tofg, = 0.0588 = 0.0005.
Having established the continuoys dependence of Keeping terms up to second order and putting= 1 (in
0(p) for two smooth processes, we now derive an exacthe same spirit ag expansion in critical phenomena)
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gives 0(0) = (7 + 4)/47> = 0.180899..., just 3.5% important information about the nature of the smoothness
below the simulation valué),, = 0.1875 = 0.0010 [5].  of the underlying stochastic process.

Note that though the IIA estimatef;jo = 0.1862, is We thank Deepak Dhar for useful discussions.

even closer to the simulation, it cannot be improved sys-
tematically. The series expansion estimate, on the other
hand, can be improved systematically order by order.
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