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Survival probability of a mobile particle in a fluctuating field
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We study the survival probabiliti?(t), up to timet, of a test particle moving in a fluctuating external field.
The particle moves according to some prescribed deterministic or stochastic rules and survives as long as the
external field that it “sees” at its own location does not change sign. This is a natural generalization of the
“static persistence”(when the particle is at réstwhich has generated considerable interest recently. Two
types of particle motion are considered. In one case the particle adopts a strategy to live longer and in the other
it just diffuses randomly. Three different external fields were considérethe solution of diffusion equation,
(i) the “color” profile of the g-state Potts model undergoing zero-temperature coarsening dynamicgi Jand
spatially uncorrelated Brownian signals. In most cases studiéd,~t~ % for larget. The exponen®,, is
calculated numerically, analytically by approximate methods, and in some cases exactly. It is shown in some
special cases that the survival probability of the mobile particle is related to the persistence of special “pat-
terns” present in the initial configuration of a phase-ordering sysf&h063-651X98)10902-9

PACS numbe(s): 05.70.Ln, 05.50+q, 05.70.Jk

I. INTRODUCTION Another example is the so-called activity-centered pattern in
a self-organized system such as an interface in a random
Considerable interest has been generated recently in umedium[15] and also in certain models of evolutiph6]. A
derstanding the statistics of first passage events in spatiallyatural question then is, What is the probability that a given
extended nonequilibrium systems. These systems include thgattern survives up to timg?
Ising or Potts model undergoing zero-temperature phase- Such persistent patterns exist also in phase ordering sys-
ordering dynamicg1-3], simple diffusion equation with tems such as the-state Potts model. For example, one such
random initial conditions[4,5], several reaction-diffusion pattern is an original domain of a specific color present in the
systemg 6—8], and fluctuating interfaces either in the steadyrandom initial configuration of the Potts model. One can then
states or approaching steady states starting from random inask, What is the survival probability of such a domain up to
tial configurationg9]. Typically one is interested in persis- timet? This quantity for the 1D Potts model has been studied
tence, i.e., the probabilitl?((t) that at a fixed point in space, recently by Krapivsky and Ben-NairfiLl7]. However, this
the quantity sging(x,t) —(&(x,t))] [whereg(x,t) is a fluc-  can be a more general question for any fluctuating field such
tuating field, e.g., the spin field in the Ising model or the as the solution of diffusion equation with random initial con-
height of a fluctuating interfagaloes not change up to time figuration or a fluctuating interface approaching the steady
t. In all the examples mentioned above, this probability de-sstate. In such examples, a domain would be a connected set
cays as a power law,(t)~t~ %, where the exponerfly is  of points where the sign of the fluctuating field is positioe
nontrivial. This nontriviality is due to the fact that the effec- negative. Another example of “pattern” persistence would
tive stochastic process in time at a fixed point in space bebe to study the probability that two adjacent domains in the
comes non-Markovian due to the coupling to the neighborsinitial configuration both survive up to time In this paper
For a non-Markovian process, calculation of any history-we develop a general framework to study the persistence of
dependent quantity such as persistence is extremely hard baratterns of a fluctuating field and discuss a few examples in
ring a few special casd40,11]. The exponen®, has also detail where explicit results can be obtained.
been measured in a recent experiment on a liquid-crystal The general framework to study some of these pattern
system that has the same dynamics asTts® Ising model persistence problems consists of monitoring the motion of an
in two dimensiong12]. The experimental value was in good external test particle launched in the fluctuating field. The
agreement with the analytical prediction @ in two-  dynamics of the test particle is suitably chosen so that the
dimensional2D) Ising model13]. The exponend, has also  particle evaluates where the specific pattern of the fluctuating
been measured in a recent experiment on two-dimensiondield is and moves there. The persistence of the pattern is
soap froth[14]. then precisely the survival probability of the test particle.
In the above process, one studied the persistence of Bhis led us naturally to study a more general “persistence of
single spin (e.g., in the Ising or Potts modebf the initial  a mobile particle in a field” problemhenceforth the PF
random configuration. A natural generalization of this wouldproblem), special cases of which correspond to the pattern
be to study the persistence opattern and not just a single persistence in the underlying field. In this paper we study in
spin, present in the initial configuration. Persistent patternsletail a few examples of this general PF problem and find
are quite abundant in nature. Examples include persisteiery rich, though often nonuniversal, behavior.
eddies and vortices in turbulence, the great red spot of Jupi- The general PF problem can be defined as follows. Let us
ter, and certain patterns of stock prices in financial marketsconsider a fieldp(x,t) that fluctuates in both space and time.
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For example, the fieldp(x,t) may be the solution of the egy, the survival probability of the particle is related to that
simple diffusion equations,¢o=V2¢, the order parameter of a pattern(original domain in the Potts model or diffusion
profile of the Ising model undergoir§=0 coarsening dy- €quation. An exact solution is presented for the special case
namics, the height profile of a fluctuating interface, or maywhen the motion of the adaptive particle is directed and the
even be Spatia”y uncorrelated Brownian Signab: 7, field is Spatla”y uncorrelated Brownian Signals. In Sec. lll
wheren(x,t) is spatially and temporally uncorrelated Gauss-Ve& consider t_he noisy motion of the test partlcle Wher_e it
ian white noise. A test particle is launched at an arbitraryP€rforms a simple random walk. Approximate analytical
initial point at timet=0. The particle moves according to Methods are developed to calculate the exponent character-
some prescribed deterministic or stochastic rules, which if¢ing the power-law decay of the survival probability of the
general depend on the local field profile. We now ask thdarticle. In Sec. IV a special case of the survival of the dif-

question, Given the dynamics of the particle, what is thdusive test particle_in the 1D Po_tt_s_model is shown to be
probability P(t) that the field “seen” by the particle at its rel_ated to thg perS|ste|jce of an initial pattern, namely, tyvo
own location does not change sign up to titRe adjacent original domains. This is also related to the fraction

The survival probability of a mobile particle in a field has Of uncollideddomain walls at time in the 1D Potts model,

been studied before in the context of heterogeneous reactioflich we study by both numerical and analytical methods.

diffusion systemg6,8] where the test particle was an exter- Finally, we conclude with a summary, some suggestions for
nal impurity diffusing through a homogeneous background.fu“‘re directions, and pOSSIble. expenmental.re.allzatlons or
These studies dealt with a special case of our general Pg_ests of our results..Some detalls'about a variational calcula-
problem, namely, when the test particle is a simple randoniiOn are presented in the Appendix.
walker and the field is the coarsening “color” field of the
g-state Potts model &=0 [6,8]. Among other studies on a Il. ADAPTIVE MOTION OF THE TEST PARTICLE
similar line was the computation of the trapping time distri-
bution of a diffusing tracer particie on a solid-on-solid sur- In this section we consider the adaptive motion of the test
face [18]. In this paper we extend these studies to severaparticle in which the particle adopts a strategy to move in a
other examples arising naturally in the context of our generajvay such that it can live longer. The model and the strategy
PF problem. is as follows. Consider a lattice with periodic boundary con-
In the PF prob|em ohe needs to Specify the dynamics oditions for convenience. The f|e|¢(| ,t) evolves with time
the field as well as that of the test particle. For the field, weaccording to some prescribed dynamics. A test particle is
will consider three different cases, namely, when the fielddaunched at=0, at an arbitrary site, say, the origin. Let us
are(i) the solution of diffusion equatiorii) the spin profile ~assume that at=0 the sign of the fieldp at the origin is
of the Ising model or in general the color profile of the positive (or negative. As time changes, the field(i,t)
g-state Potts model undergoifig=0 coarsening dynamics, changes. As long as the sign of the field at the origin is
and(iii ) spatially uncorrelated Brownian signals. The motionpositive (or negative, the particle does not move. When the
of the test particle, in general, consists of two separat&ign changes at the origin, the particle looks for a nearest
moves. In the first part of the motion the particle sees théeighbor where the field is positiver negative. If it finds
local field profile and then adopts a strategy to move in suctguch a neighbor it goes there. In case there is more than one
a way so that it can live longer. This is the “adaptive” part neighbor with positiveior negative fields, it chooses one of
of the motion that depends on the local field profile. In ad-them at random. Then it waits there until the signfoét the
dition to this adaptive move the particle in general may benew site changes and then again it moves to one of its cur-
subjected to an external noise, which constitutes the secorf@nt neighbors and so on. If at some stage the sign changes at
part of the motion. This “noisy” part consists of Brownian the particle’s current site and it fails to find a neighbor with
moves of the particle that is independent of the local fieldpositive (or negative field, then it dies. Then we ask, What
profile. While the motion consisting of both adaptive andis the probabilityP,4(t) that the particle survives up to time
noisy moves is more general, for the sake of simplicity wet? Note that if the particle did not move at all and stayed put
will restrict ourselves to two separate cases when the motioat one site only, then the survival probabiliBg(t) is the
is either purely adaptive or purely noisy. In the first case, theusual “static persistence.”
survival probability is larger than the “static” cadevhen We first consider the case when the fieldx,t) is the
the particle is at regiand in the second case it is smaller. In solution of the simple diffusion equationh¢=V2¢, starting
cases where survival probabilities in both the mobile and thérom a random initial configuration of. For this simple
static cases decay as power laws, the exponent inequalifield, analytical computation of even the static persistence
0,4= o= 0,,, holds, whered,4 and 6,,, are the persistence Py(t) turned out to be quite nontrivigt]. In one dimension,
exponents associated with the adaptive and the random waik was found that Py(t)~t~ % for large t, where 6,
motion of the test particle. The relationship between the sur=0.12070.0005[4]. The reason for the nontriviality once
vival probability of the test particle and the persistence ofagain can be traced to the fact that the effective Gaussian
patterns in the underlying field is established wherever posprocess that a static particle sees in time is non-Markovian.
sible. In all these studies we will restrict ourselves to oneNevertheless, an “independent interval approximation”
dimension, although in most cases the generalizations tdlA) was developed if4], which produced analytical pre-
higher dimensions is quite straightforward. dictions for 6, for all dimensions that were extremely accu-
The paper is organized as follows. In Sec. Il we considerate.
the adaptive motion of the test particle. Three cases of the In the case of the moving particle with the adaptive strat-
fields are considered. By suitably choosing the adaptive straegy, we carried out a numerical simulation. The results are
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0 ' ' ' ' gt + is the probability that the local fielgh(0t) does not change
0z " " 1 sign up to timet. While a continuum formulation does not
oal i make it easier to compute the adaptive persistence exponent,

e it relates the problem to the more familiar problem of persis-
ot I | tence of fluctuating interface@]. However, we will not
08 . T . ] study this equation any further in the present paper and will

g . . t, ] defer its discussion to the futuf@9].
) 2l T e | We now turn to the case when the field is the color field
RN o of the g-state Potts model undergoiffig=0 temperature dy-
A A - namics. At each site of a lattice, the field can takpossible
as| < 1 colors. One starts from a random initial configuration of col-
sl <] ors. A site is chosen at random and its color is changed to
x one of its neighbors. This is how the color field evolves. A
2 2 ; 6 s m . test particle is launched as usual and it waits at its initial site
it until the color of that site changes. Then it tries to find a

neighbor with the same color and if succeeds it goes to that
neighboring site. When it does not find any neighbor of its
own color the particle dies. Then the question is as before,

FIG. 1. A log-log plot of Monte Carlo simulations of the “adap-
tive” persistenceP,4(t) (plus symbol$ and “static” persistence

Po(t) (cross versus timet. The simulations were carried out on a . . . :
periodic lattice of 100 000 sites and results were averaged over that is the probability®,¢(t) that the particle survives up to

samples. The best fit to the straight lines gives the exponent valudiN€ t? The corresponding static persistence exponent has
0,4=0.091+0.002 andd,=0.12+0.001. been calculated exactly for aj recently[2].
Our job for calculating the adaptive persistence for the

presented in Fig. 1. We finB,4(t) ~t~ %d for larget, where  g-state Potts model is simplified by making the observation
6,4=0.091+0.002, compared té,=0.12+ 0.001. Thus, the that the test particle survives as long as the original domain
strategy adapted by the particle is “successful” in the sens®f the Potts model that contained the test particle=a0

that the exponent, and not just the amplitude, characterizingurvives. Thus the adaptive persistence is precisely the sur-
the decay of persistence decreases. Thus in theival probability of an “original domain” that has been stud-
renormalization-group language, the adaptive strategy is &d recently both numerically and analytically within an 1A

relevant perturbation. for all q by Krapivsky and Ben-Nainmi17]. In fact, even for
It is clear from above that the strategy the particle adoptshe diffusion equation, adaptive persistence is also the sur-
is basically to move towards the local maximuor mini-  vival probability of an original domain. However, the IIA

mum) of the underlying field if the initial sign of the field developed in17] for the Potts model cannot be easily ex-
that the particle sees is positiyer negativg. By symmetry tended to the diffusion equation for the following reason.
of the initial condition the survival probability of the particle The evolution of the Potts model is particularly simple in
does not depend on the initial sign of the field that it seesterms of the domain walls where the field changes color in
Hence, without any loss of generality, it is sufficient to con-space. These domain walls perform independent random
sider the case when the particle moves only towards a locavalks (the rates of which do not depend on the local spins
maximum. This observation may be used to develop a posand when two walls meet, they either annihilaéth prob-
sible continuum approach to this problem. [Rt) denote  ability 1/(q—1)] or aggregatdwith probability (q—1)/(q

the position of the particle measured from a fixed point in—2)]. Therefore, for the Potts model it is quite simple to
space and denote the coordinate of an arbitrary point in write down an evolution equation fdé?(n,m,t) (probability
space measured from the location of the particle. Then ththat a domain of lengtm containsm original domaing
effective field ¢(x,t) as seen by the particle is given by within the 1A [17] and thereby calculate the domain survival
¥(x,t) = d(x+R(t),t). Note thatx=0 denotes the position probability. However, writing down a similar evolution
of the particle. Given thad satisfies the diffusion equation, equation for the diffusion equation does not seem to be easy
the equation of motion ofy(x,t) is given by ¢,y=V?2y  as the domain walls in the diffusion equati@re., the zeros
+R(t)d,. We now model the adaptive strategyamely, ~Of the diffusive field ur_1dergo c_omplicated motion that de-
that the particle tries to move towards the local maximum Pends upon the local field profile. _
by assuming that the velocity of the particle is proportional ~However, we want to stress that the concept of adaptive

to the local slope of the field that the particle sees, k., persistence is more general than just being equivalent to the

— Xy’ (03), wherey’ denotes the derivative with respect to persistence of a pattern, e.g., the dema'in survivaj probability
x and\ is a constant. The implication of this assumption isIn the case of the Potts model or diffusion equation. In fact,

clear. If the local slope is positive the particle moves to thego(:r?aei?] rs]t?tj(?cﬁ(r:gsssc%r;?sei?nuwien ttri]s]teth[:eot*e\é?(glmglgle;?/er;]aﬁ]
right and if the local slope is negative the particle moves tqg : Y Lo mpie, .
the left. Thus the particle always tries to move towards thethe simplest case where at each site of the lattice there is an

. . o ) independent Brownian signétompletely uncorrelated spa-
local maximum. So the equation satisfied ifx,t) is tially), one can define the adaptive persistence and has a

Ap=V2g+ Ny (X,) ' (01), (2.1  nhontrivial exponent, as we will show below via an exact
solution. In cases when the evolving field has a structure of
which is a nonlocal and nonlinear Kardar-Parisi-Zhang typecoarsening domains, the adaptive persistence is equivalent to
of equation. Then the adaptive persistence in this formulatiothe domain survival probability.
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We now turn to the Iast_ case fqr which we present anpP(ty,t)=Py(tg,t)+ (p/2)Fo* Po+ (p/2)?Fo* Fo* Po+ - - -,
exact solution of the adaptive persistence. In this case, the (2.9
field is spatially uncorrelated Brownian signal at each lattice
site 9, (i ,t) = 5(i,t), where (i t) is spatially uncorrelated WhereFo* Po= [Fo(to,t1)dt;Po(t1,t) and so on. The first
Gaussian white noise with zero mean apg(i,t) 7(j,t")) term is the probability that the sign of the signal at the start-
=2D 4, ;8(t—t'), whereD is a constant. A test particle is ing §ite did not change up to timeand hence the particl_g did
launched as usual &0 at the origin. Let us assume that the Not jump at all. The second term denotes the probability that
signal at the origin at=0 is positive. The particle does not the particle jumped once. The paramegeis the survival
move as |ong as the Sign of the Sign@b‘t the Origin does factor and 1/2 is the probablllty that the Sign of the Signal of
not change sign. When it does, the particle either dies wittihe right neighbor(to which the particle jumpsis positive.
probability 1— p or survives with probabilitp and then tries  The third term denotes the probability that the particle
to jump to its neighbor on theght-hand side If the sign of ~ Jumped twice and so on.
the signal at that neighbor is positive at the time of jumping, T0 perform the convoluted integrals in E&.4) we make
the particle stays there until the signal is positive there and s8 change of variabld;=In(t /ty). In this new variable the
on. Finally, if it does not find a right neighbor with a positive effective process that the particle sees, though not Gaussian,
signal at the moment of jumping, the particle dies. Note thé?@comes stationary. One can then use the Laplace transforms
two different aspects in this problem from before. A survivalto solve Eq.(2.4). Let P(s), Pqy(s), andFy(s) denote the
factorp is introducedp=1 is the fully adapted case consid- respective Laplace transforms B{T), Po(T), andFq(T).
ered earlier for the diffusion equation or the Potts mogel. Then, by taking the Laplace transform of Eg.4), one gets
=0 will correspond to the static persistence. The second

aspect is that the motion of the particledsected in con- =~ 'I5o(s)
trast to theundirectedcase considered for the diffusion equa- P(s)= D : (2.9
tion or the Potts model. This assumption dfectedness 1— —Fq(s)

2

turns out to be important for exact solution and thus serves as
a useful exactly solvable toy model of adaptive persistence. )
It turns out, as we show below, that the exponégtcan be  USing the relationFo(T)=—dP,/dT, one further gets
calculated exactly and depends on the parameteontinu-  Fo(S)=1—5sPy(s). This enables us to writB(s) entirely in
ously. terms of Py(s),
Let Po(t,tg) denote the probability that a Brownian signal
at a given site does not change sign from titpeo time't.
This is the usual static persistence, which can be readily (8)=—"————. (2.6)
computed since it is a Markovian procd4®,20. The con- 1— E+ p_S]SO(S)
ditional probability Q(¢,t| ¢g,t,) for a Brownian signal to 2 2
assume the valug at timet given that its value wag, at .
to (<t) is obtained by solving the diffusion equation We expectP(to,t) to decay agt™%d for large t. This
means that in the variabl@=In(t/ty), P(T)~exp(—6,4T)
O(éut] o to) 1 F{ (¢—¢O)2} for large T. This implies that the Laplace transforRy(s)
U @o.lo)= ———=8XP — 757 1| will have a pole ats=— 6,4, i.e., the denominator of the
JAD7(t—to) 4D(t~to) (2p Tight-and side of Eq(2.6) will have a zero as=—fy.
' Using Po(T) = (2/m)sin (e ?), one therefore sees that the
The method of imagei20] may be used to express the prob- €xponentf,q is given by the positive root of
ability Q* that the signal changes from, to ¢ without
changing signin the form Q" (¢,t| ¢o.to) = Q(¢,t| do.to) 1— P_ %Imsin’l(e’T’Z)eaadeT:O 2.7
—Q(¢,t|— ¢g,to), Wwhereg, and ¢ have the same sign. To 2 7 Jo ' '
obtain the probability that the process is positive throughout
the interval (,,t) one multipliesQ™* by the probability This integration can be evaluated by parts and one finally
Q(¢0,t00,0) that the process takes the valfig att, and  gets
integrates over positive values ¢f, and ¢; the persistence
probability also cor_wtains a s_ymm_etric_ contribution from the B[1/2,1/2- 0,4]= 2_77 7 2.8
process always being negative, yielding finally

Po(s)

ol

% % N whereB[m,n] is the usual Beta function. It is clear that in

PO(t*tO):ZL d¢f0 d¢oQ ™ (¢,t]$o0,to) Q¢0,t0[0,0) the limit p—0 one recovers the usual static persistence ex-

ponentfy=1/2. For the fully adapted modepE 1), we get
2 0.4q=0.3005648L..., which agrees very well with our nu-
=om (o ft). (23 merical simulations. It is also clear that for any nonzpro
the adaptive exponeri,q< 6y=1/2 as expected.

Let Fo(tg,t) denote the probability that the signal crosses The reason that the exponehy, is exactly soluble for the
zero for the first time at time. Then clearly Fy(tg,t) directed case is that the effective process seen by the test
=—dPy/dt. Then the probability of no zero crossing particle is Markovian. In the undirected case this is not so
P(t,,t) for the adaptive particle is given by the convolution because the particle can jump back to a site already visited
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TABLE I. Estimates of the persistence exponents of a diffusingon ¢, however, is not very surprising for the following rea-
tracer particle through an external field evolving via diffusion equa-son. The test particle dies whenever it crosses any “zero” of
tion. For different values of the ratio=D /Dy as shown in col-  the field ¢(x,t). Thus two zeros of the field on either side of
umn 1, exponents are obtained in column 2 by direct Monte Carlghe test particle act like two boundary walls. However, these
simulation of the processéc), in column 3 by simulating a \yg]is are not static. They themselves are moving as the field
Gaussian stationary process with the correldier) =[coshll/2) 4y 1) is evolving in time. In fact, since the typical distance
+csinh(Tl/2)] "), in column 4 by using the variational esti- between zeros of the diffusing field increases/asthe walls
mated,,, for the above Gaussian stationary process with correlato[)Oundin the test particle are therefore diffusing\/—asThiS
(T), and in column 5 by using the rigorous upper boug, for rticula? case is kpnown to be margipal] in the sense that

the above Gaussian process. Monte Carlo simulations were carri . .
out on a periodic lattice of 100 000 sites and the results were avefNe exponent, characterizing the power-law decay of survival

aged over 20 samples. probability of the particle, depends continuously on the ratio
of the diffusion constants of the particle and the walls.
c 04(MC) 04(G) Oyar Oy While this explains qualitatively why, depends continu-

ously onc, it does not give any quantitative estimate of the
05  020-001  0.19¢:0.005 0189 0210  exponent. To make progress in that direction, we proceed as
1.0 0.26:0.01 0.25-1/4 1/4 1/4 follows. Letx be the coordinate of an arbitrary point in space
2.0 0.35:0.01 0.325:0.005 0.319 0350  measured from the rest frame of the particle. Then the field
3.0 0.42:0.01 0.38%0.005 0.363 0.442 ¥(x,1) = p(x+R(t),t) as seen by the particle evolves as

4.0 0.48-0.01 0.43%0.005 0.396 0.528

5.0 0.53-0.01 0.496:0.005 0.422 0.611 W Y

6.0 0.58-0.01 0.5270.005 0.444 0.688 Ea X 7

7.0 0.62£0.01 0.57%0.005 0.463 0.776

8.0 0.65-0.01 0.628 0.005 0.479 0.839 The field ¢y and the noisen are completely uncorrelated.

2.0 0.69-0.01 0.694- 0.005 0.493 0.912 Note that for a given realization of the noise procgsét)},
10.0 0.73-0.01 0.722 0.005 0.505 0.984 the process/(x,t) at a fixedx as a function ot is a Gauss-

ian process. However, when the distribution#gft) is also
taken into consideration/(x,t) at a fixedx no longer has a
before and therefore the probability that the signal is positivesaussian distribution due to the multiplicative nature of the
there at the time of current jumping is conditioned by the factnoise in Eqg.(3.1). It is nevertheless useful to calculate the
that the signal had crossed zero there at some earlier timavo-time correlatoiC(t’,t) =(#(0t’) #(0,t)) that character-
Therefore, it is difficult to computé, 4 exactly for the undi- izes the temporal process at the location of the particle, i.e.,
rected case. atx=0. This can be easily performed in tkespace where
the solution is given by

D¢V2y+ (1). (3.2

[ll. NOISY MOTION OF THE TEST PARTICLE

> . t

In the preceding section we considered the adaptive mo- (k1) = (k0O ‘ex;{ |kf0 ”(t,)dt')' 3.2
tion of the test external noise. In this section we consider the
other case when there is only noise and no adaptation. In thig/e then computeC(t’,t)=fdk(y(—k,t")¢(k,t)), where
case the particle just moves randomly through the medium ifhe average, denoted by angular brackets, is taken over both
which a field ¢(x,t) is evolving according to its own pre- the initial conditions ofy and the history of the noisg. The
scribed dynamics. As before, the test particle is launched ghijtjal condition is taken to be random, so thag(k,0)
the origin att=0 where the sign of the field is positivsay (—k,0))=A, whereA is a constant. Since the noisg is
att=0. The particle then performs a Brownian moti®1  Gaussian white noise, we use the property
=n(t), where 5(t) is a Gaussian white noise with zero (exp@kfi, n(tl)dt1>=exp[—Dpk2|t—t’|]. It is then easy to see
mean and the correlatdry(t) 7(t"))=2D,8(t—t"). Here 4t ind=1,
R(t) denotes the position of the particle from some fixed

reference point. The motion of the field and that of the par- 1 1
ticle are completely uncorrelated. The particle dies when the C(t',t)= - =. 3.3
field that it sees changes sign. Then we ask, What is the 2\m \Dy(t+1")+Dylt—t|

probability that the particle survives up to tin@

We first consider the case when the figl,t) is evoly-  11€___normalized  autocorrelator f(t',t)=C(t",1)/

ing according to diffusion equatiot,¢s=D;V24. We per- YC(t',t")C(t,1), when. expres_sed in terms qf the variqble
formed numerical simulation to compute the survival prob-T=M(b), becom?s stationary, i.e., only a function of the time
ability of the test particle. This probability decays as a powedifference|T—T’|. Denoting, for convenience, this time dif-

law P(t)~t~% for larget, where the exponent, is found feren_ce byT, one finds that the stationary autocorrelator
to depend continuously on the ratio of the two diffusion con-f(T) is given by
stantsc=D,/D¢. The results are presented in the second 1
column of Table | under the headingy(MC). It is clear f(T)= ,
from this table that for any nonzem 64(c)> 6,, where \/cosr(T/2)+csinr(|T|/2)

0, is the corresponding static persistence exponent, i.e.,

whenc=0. This continuous nonuniversal dependenc@pf wherec=D,/Dy is the ratio of the two diffusion constants.

(3.9
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Note that forc=0, f(T) reduces to the static autocorr- 2 ' - - ' - ' ' ———
elator fo(T)=[cosh{I/2)]~ 2 [4]. However, there is an im- 18} ar
portant difference betweer=0 andc+#0 cases. Foc=0,
the stochastic stationary process, whose correlator is givel
by fo(T), is Gaussian. However, far+# 0, while the process
is still stationary in the variabld, it is non-Gaussian, as taf .
mentioned earlier. This is evident from E@3.2) since s 1l ]
Y(k,t) is a product of two random variableg(k,0) and ®
exdikf#(t")dt'] and hence is not clearly Gaussian, even
though both (k,0) and %(t) are individually Gaussian. 06

O%X+
1

¥ X+ 0O
* X+ O

Therefore, the approximate method developdd for the 0al g * * ]
casec=0 to compute the asymptotic distribution of the in- . ?

terval between successive zero crossingBy(T) e ¥ |
~exp(—6,T)~t % for larget cannot be simply extended to s ] 5 . . . 5 - . s 10
thec#0 case. ¢

theltplrsocr:]gzs gze;eé;lf;;faur: ;t)?occilgts"f]afvi?]é?ﬁgré);(rlrrlnea&]g-pointFlG' 2. \/_isual_ summary of the different measures of the expo-
: : nentdy as given in Table .
correlator for two reasons. First, a comparison betwégn
obtained numerically for the actual process and that obtained . . o
for the corresponding Gaussian process will tell us how imA = 1/4 andf,(T) = — 1/2sinh{T/2) exp(-3T/4). Using this in
portant the non-Gaussian effects are. Second, there hafl- (3.5 and performing the integration, we get, to order
been some recent developmefit8] in approximate analyti-
cal calculations of the exponent for Gaussian stationary pro- G)= 1 3 3.6
cesses that one can use in the present context. Therefore, in '
the following, our strategy would be to estimate the exponent
04(G) [which characterizes the exponential decay of the dis- This perturbation theory may not give good estimates for
tribution of intervals between successive zero crossing®y4(G) whenc is far away from 1. However, one can use a
P(T)~e %(®T for large T] for the Gaussian process with variational estimate foé4(G) for general. This variational
the correlatorf(T) as in Eq.(3.4) and then compare it with method was developed recently in Rgf3] by mapping the
the 4 for the actual process. zero crossing problem to that of the evaluation of ground-
We first present the numerical results f@y(G) for the  state energy of a corresponding quantum problem. This
Gaussian process with the correlator as in 8). Thisis method was usefil3] to approximately calculate the static
done by constructing a time series having the same correl@ersistence exponent for the Ising model in both one and two
tion function. It is most convenient to work in the frequency dimensions. The results were in good agreenj&gi with
domain rather than the time domain. Details of this simulathe exact result in one-dimensi$¢2] and numerical simula-
tion procedure can be found in RE®]. The results oby(G)  tions[23] as well as direct experiment2] in two dimen-
for different values ot are presented in the third column of sions. This method works for class-1 Gaussian stationary
Table I. By comparing columns 2 and 3, it is evident that theprocesses, i.e., wheifT)=1—a|T|+-- for smallT. Since
non-Gaussian effects are indeed quite small and the Gaussi#nour present cas&(T) in Eq. (3.4) is class 1 for any non-
approximation seems to be quite good. zero ¢, one can estimat®@y(G) by using this variational
However, exact analytical calculation 8§(G) even fora method. This method gives two estimatgs,, and 0,,,, for
Gaussian stationary process with a general correfdfy is  the exponentdy(G). While 6,4 is a strict rigorous upper
difficult and has remained an unsolved problem for manybound for 64(G), 6,5, gives the best variational estimate.
years[10,11]. Exact results are known only in a few special The salient features of the variational method and the expres-
case$10,11]. One such case is whdT)=e Tl forall T.  sions for ., and 6,,, are given in the Appendix.
In this case, the Gaussian process is a Markov process and For the process being considered with the correlator as in
one can show exactly th&(T)~e T for largeT whered  Eq. (3.4), estimates,,, and 6, are presented, respec-
=\o. By looking at f(T) in Eq. (3.4), we see that for  tively, in columns 4 and 5 of Table | for different values of
=1, f(M= e~ 17" for all T. Therefore,84(G)=1/4 forc  the parametec. Comparing these with columns 2 and 3, it is
=1. Forc close 1, sayc=1+ ¢, one can use a perturbation clear that the variational approximation gets progressively
theory that has been developed recently to calcufgtéor ~ worse asc increases. A visual summary of these different
processes that are close to a Markov prodd$522. Ac-  measures of the exponent is given in Fig. 2.

cording to this theory, if (T) =exp(—\|T|) + &f,(T), wheree To summarize, we find that the exponéltdepends con-
is small, then the exponent;, to ordere, can be most easily tinuously on the ratiac of the diffusion constants. For any
expressed as arbitrary nonzera, 64> 6y, where , is the corresponding

static persistence exponent. Non-Gaussian effects are found
2N (= to be quite small.
_ . _ _ -3/
1me fo fa(ML-exp(—2AT)] *4dT|. We now turn to the case when the fluctuating field is the
(3.5 spin field of the Ising model or, in general, the color field of
the g-state Potts model undergoifig=0 coarsening dynam-
In our case, expandingT) in Eq. (3.4) aroundc=1, we get ics starting from a random initial configuration. The tracer

04(G)=\
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particle once again moves diffusively through the medium TABLE Il. Exponent6, that characterizes the asymptotic decay
with a diffusion constanb, and whenever the field that the P1(t)~t"", the probability that a domain wall remains uncollided
particle sees at its own location changes sign, the particlgp to timet in the zero-temperature dynamics of testate Potts

dies. As before, one is interested in calculating the survivamodel. Exact values of, are quoted fog=2 andq— . For other
probability P(t) of the tracer particle. values ofq, 6; (column 2 is estimated from Monte Carlo simula-

In the g-state Potts model &t=0, the domain walls per- tions on a periodic lattice of 75 000 sites and results averaged over

form a random walk and whenever two domain walls meet,20 different initial conditions. The estimated upper bounds for

they either annihilate each other with probabilityd/(1) or 61(q) (as explained in the texare presented in column 3.
coagulate to form a single wall with probabilityj ¢ 2)/(q
—1) [2,24]. The tracer particle dies whenever it crosses g
paths with any domain wall. One expects that the survival 2 1/2

probability of the tracer particle will decay &(t)~t~ % for 3 0.72-0.01 0.79248 . ..
larget. The exponent(q,c) is expected, as in the diffusion 4 0.86+0.01 0.91-0.01
5
6

0, 0,(max)

case, to depend continuously og and the ratioc 0.95+0.01 1.00-0.01
=D,/D¢, whereD, is the diffusion constant of the test 1.04+0.01 1.06-0.01
particle andD; is that of the domain walls. 50 1.47-0.01

This problem has been studied in some detail befés@. o 3/2
Let us just summarize here the main results that are already
known. In the limitg— o, 6,(%,c) can be computed exactly
by noting that only two domain walls on either side of the
tracer particle actually matter for the calculation Bft)
[25]. One finds exactly 6,(,c)=m/{2 cos [c/(1+0)T}
[25,6]. Note that forc=0 this reduces to the static persis-

gregate to become a single wall with probability<{2)/(q
—1) [3,24]. The static persistence then is the probability that
a fixed point in space is not traversed by any domain wall.
tence exponent,(=,0)=1[2]. In the Ising limitq=2, how- However, a somewhat more natu_r_al quantity in t.his domain
ever, there is no exact result for generalAn exact resultis  Wall representation is the probabiliy, (t) that a given do-
available only forc=0, 6,(2,0)=3/8[2]. For generat and main wall remains uncqlllded up to tl_me A little Fr_]ought
q=2, a mean-field Smoluchowski type of approach was deShows that this is precisely the survival probability of two
veloped[6], whose predictiong,(2,c) = (1+c)/8 were in adjacent domains prese_nt in the initial conflguratlpn. We
good agreement with numerical simulatiof&. However, ~Show below thai;(t)~t~’ for larget, where 6,(q) is a
this Smoluchowski approach, when extended to the Igrge-d-dependent exponent that is not obviously related to any
limit, differed substantially{6] from the exacty—o result. ~ Other known exponent via scaling relations.
Finally, a perturbation theory has been developed recently by In Sec. lll we considered the exponeh(q,c) character-
Monthus[8] and the exponent,(q,c) has been determined izing the decay of the survival probability of a diffusing test
at first-order perturbation ig—1 for arbitraryc and at first ~ particle in the background of the diffusing domain walls of
order inc for arbitraryq. the Potts model. The parameteis the ratio of the diffusion
We will not study this exponemt,(q,c) in its generality  constant of the test particle to that of the domain walls. Let
any further in this section. However, in the next section, weus consider the case=1. In this case the test particle cannot
will study in some detail the special case 1, asitturns out be distinguished from the other diffusing domain walls.
to be a particularly interesting case from the point of view ofsince the test particle dies whenever any other domain wall

the pattern persistence problem of the Potts model. touches it, it is clear that the survival probability of the test
particle forc=1 is precisely the fraction of uncollided do-
IV. PERSISTENCE OF A SPECIFIC PATTERN main walls in the Potts model and henég(q) = 6,(d,c
IN THE 1D POTTS MODEL =1).

In Sec. Il we showed that the survival probability of an Clearly, 6, can be determmed exacFIy in the tWO I|m|ts
adaptive test particle is related to the persistence of a specifﬂ:: 2 andg—e. Forq=2, since there is only a}nnlhllat|on
pattern, namely, an original domain in tiie=0 dynamics of upon contaf:t between domain Wallg, the fractpn of uncol-
the Potts model. In this section, we show that the survivalided walls is the same as the density of domain walls that
probability of a noisy or diffusive test particlestudied in ~decays as~t™ ¥ for larget and hencef;(2)=1/2. In the
Sec. Il is also related to the persistence of yet another patd— limit, by settingc=1 in the exact formulag,(=,c)
tern in the 1D Potts model, namely, the survival up to time = /{2 cos '[c/(1+c)]} [25,6], one getsd,; =3/2. For inter-
of two adjacent original domains present in the initial con-mediate values ofl, we present numerical results in column
figuration. 2 of Table Il. It is clear that the exponeit(q) increases

Let us consider the zero-temperature coarsening dynamigsonotonically withg.
of the g-state Potts model starting from a random initial con- The exponentd, can be quite easily computed within
figuration. In an infinitesimal time intervadlt, each spin mean-field theory. LeN(t) andNy(t) denote, respectively,
changes its color to that of one of its neighbors selected ghe total density of domain walls and density of uncollided
random. These dynamics can be equivalently formulated imvalls at timet. Let Q,(t) denote the density of domains of
terms of the motions of domain walls. The domain wallssize 1 (here 1 is the lattice spacing and hence the smallest
perform independent random walks and whenever two wallsnterval siz¢. ThenN(t) andQ(t) are related via the exact
meet, they either annihilate with probability §/ 1) or ag-  relation
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6.(gq—1) in the inequality(4.5). This would be an improve-
ment over the exact bour(d.6) obtained by comparing with
g=2. These improved numerical boundg(max) are pre-

However, there is no such simple exact relationship betweefented in column 3 of Table I1.

N4(t) andQ,(t). However, if one neglects correlations, it is

easy to write such a relationship within mean-field theory,
dN; N,;\?
dt

2 N1
N @y

Ny
(1—W>Ql, (4.2

It was pointed out by MonthuE8] that carrying out the
same formalism that led to the exact determination of the
static persistence exponefi(q) [2] is not as straightfor-
ward as computing the exact value &f(q,c) for generalc.
However, one may hope that some special simplifications
might occur forc=1, leading to the exact computation of the

where the first term on the right-hand side represents thexponenté,(q), though we have not succeeded yet in that
annihilation of two uncollided walls and the second the con-direction.

tribution from annihilation of an uncollided wall with a col-
lided wall. EliminatingQ, from the two equations above, we
get N;~N?@~D/4ysing the resulN(t)~t~ 2 we finally
obtain 6,(q)=(q—1)/q, within mean-field theory. While
the mean-field answer is exact fqe=2, it gets worse as

V. SUMMARY AND CONCLUSIONS

In this paper we have studied the persistence of some
patterns present in the initial configuration of a fluctuating

increases as evident by comparison with Table Il. Presumfield. It was shown that some of these pattern persistence
ably, the mean-field value forms a lower bound to the trugproblems are related to the survival probability of a mobile
exponent value, though we have not been able to prove it. particle launched into the field. By suitably adjusting the

However, one can obtain rigorous upper boundé@) rules of the dynamics of the particle one can study the per-
as follows. This can be done by generalizing the argumentsistence of different patterns in the underlying field. This led
used by Derridd3] to obtain upper bounds to the static per- us to study the PF problem in general. Several special cases
sistence exponem,(q). The argument goes as follows. It were studied in detail and different results were derived.
was noted by Monthu$8] that the problem of a diffusing It is clear from our study as well as others that there is a
tracer particle moving among the domain walls of the Pottsyhole hierarchy of exponents associated with the decay of
model can be mapped to a reaction diffusion problem whergersistence of different patterns in the phase-ordering sys-
particles are generated from a source that is diffuse aroungms. It is not clear at present whether or not these exponents
and aggregate upon contact. The only difference from there independent of each other. While these exponents do not
static cas¢3] was that the source is now moving. In fact, the depend on the details of the initial configurati@s long as it
source diffuses with the same diffusion constant as the traces short rangey it is not clear whether they can be consid-
particle. It is then possible to write the survival probability ered universal and if so, in what sense. For example, if the
P1(t) as[8] diffusion constant of any single domain wall of the Potts
model changes slightly, then the exponégptcharacterizing
the decay of survival of the walprobability that it remains
uncollided also changes. Clearly, in this respect the expo-
nent is nonuniversal. So the important question that remains
whereP(m,t) is the probability of havingn particles in the to be answered is, What are the criteria one should use to
corresponding reaction diffusion problem. Writing the abovedecide whether or not an exponent in the phase-ordering dy-
equation forq=q, as @=1) namics is universal?

One of the interesting extensions of the present work
would be to study the PF problem when the fluctuating field
is the height of an interface in or approaching the steady
state. The static persistence for interfaces has been studied
recently in some detalB]. Also anomalous diffusive behav-
and then using Jensen’s inequalitx®)=(x)2 for a=1 and  i0r of a tracer particle on a solid-on-solid surface was noted
X a positive random variableas was used in the static case [18] and was attributed to the temporary trapping or burial of
[3], we immediately obtain the inequality the particle in the bulk of the crystal. In addition, given that
sophisticated techniques using scanning tunneling micro-
scope already exist for determining temporal step fluctua-
tions on crystal surfacd6], it is not unreasonable to hope
that such techniques may be refined in the future to measure
the survival probabilities of the static as well as the mobile
particle in a fluctuating interface.

Finally, it has been noted recenfl27] that static persis-
tence exponent for the diffusion equation may possibly be
measured in dense spin-polarized noble gaskse (and
For g=3 this gives#,(3)=<0.792 48 ..., which should be  12%Ke) using NMR spectroscopy and imagif2g]. In these
compared with its numerical value 0#8.005. For higher systems the polarization acts like a diffusing field. With a
values ofqg, one can have a numerical estimate of a tighterslight modification these systems may possibly be used to
upper bound off,(q) by using the numerical value of measure the persistence of some patterns of the diffusive

mm=§Pmm¢W, (4.3

Pi(dy)
dz

:mE:l P(m,t)qz_mzz P(m’t)[ql—m]qullnql
(4.4

In
CREACAI @5

for g,=q;. For example, using the exact resalt=1/2 for
g=2 and the above inequality we get

0.(q)=<Ing/2In2. (4.6
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field as discussed in the present paper. Omax=E1(®min) — Eo(@min), Which also is a rigorous upper
bound to the true exponemy(G) that characterizes the
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For numerical purposes, it is convenient to reformulate
these expressions in terms of integrals in the time domain, in

It was shown in[13] that the exponenéy(G) is exactly the form
the ground-state energy differenég(G)=E,— E, between

APPENDIX: THE VARIATIONAL METHOD

two quantum problems, one with a hard wall at the origin E,(wg) = wg §+ 2 , ~1 +7(3_7T_1)
and the other without a wall. The energy (without a wal) 4 mwg T(0) 8
can be determined exactly, 1
e :irln G(w) g AL _w_éjo dTg(T)V(on)J, (A5)
" 2m)o w? @
_ _ 2)_ ®min Y 1 ® o
whereG(w) = 1/f (w) and T (w) is the Fourier transform of Ey'= 4 Tde 2wmmfo dTg(T)e™ “min,
the correlation functiori(T) of the Gaussian stationary pro- (A6)

cess normalized such th&{w)~ 2 for large w. The en-
ergy E; (with a wall at the origin is estimated variationally where
as it is hard to obtain exactly. For class-1 processes, one can

use a harmonic oscillator with a wall as the trial state with Vix)= 4 1+ 3 1— e 2012y e . e\
the frequencyw, of the oscillator as the variational param- (x)= p Z( e ) > Tg/sn e
eter. The variational enerdgy,(wg) is given by the expres- (A7)
sion[13]
3 2/G(0) 2 G(Xwq) l ( ! 2) 2 ¢ f(T) (A8)
B w Xwg y=Ilm|=——-0|=—2-7 ,
El(wo)—wo §+_<a)_02_1) ;fo dX( wg w— f(w) daT T=0
and
—x2—1)S(x) , (A2)

1 (= , 1
9(M= Efmd“’em('“f—(w) — o= 7) )

whereS(x)=32,_,nc,/(x?+4n?) with ¢, given by

4 { 2! |? Apart from the convenience of integrands with exponential
Cn .
)

:w22"(2n+ ! nl(2n—1 (A3) " rather than algebraic tails at large values of the integration

variable, the real-space formulation has the bonus of not hav-
One then minimize&;(wg) with respect tawy and uses this ing to evaluate a sum at each point in the integration domain,
minimizing frequencyw,,;, to obtain the variational estimate as in Eq.(A2).
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