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Survival probability of a mobile particle in a fluctuating field

Satya N. Majumdar1 and Stephen J. Cornell2
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~Received 30 July 1997!

We study the survival probabilityP(t), up to timet, of a test particle moving in a fluctuating external field.
The particle moves according to some prescribed deterministic or stochastic rules and survives as long as the
external field that it ‘‘sees’’ at its own location does not change sign. This is a natural generalization of the
‘‘static persistence’’~when the particle is at rest!, which has generated considerable interest recently. Two
types of particle motion are considered. In one case the particle adopts a strategy to live longer and in the other
it just diffuses randomly. Three different external fields were considered:~i! the solution of diffusion equation,
~ii ! the ‘‘color’’ profile of the q-state Potts model undergoing zero-temperature coarsening dynamics, and~iii !
spatially uncorrelated Brownian signals. In most cases studied,P(t);t2um for large t. The exponentum is
calculated numerically, analytically by approximate methods, and in some cases exactly. It is shown in some
special cases that the survival probability of the mobile particle is related to the persistence of special ‘‘pat-
terns’’ present in the initial configuration of a phase-ordering system.@S1063-651X~98!10902-9#

PACS number~s!: 05.70.Ln, 05.50.1q, 05.70.Jk
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I. INTRODUCTION

Considerable interest has been generated recently in
derstanding the statistics of first passage events in spat
extended nonequilibrium systems. These systems include
Ising or Potts model undergoing zero-temperature pha
ordering dynamics@1–3#, simple diffusion equation with
random initial conditions@4,5#, several reaction-diffusion
systems@6–8#, and fluctuating interfaces either in the stea
states or approaching steady states starting from random
tial configurations@9#. Typically one is interested in persis
tence, i.e., the probabilityP0(t) that at a fixed point in space
the quantity sgn@f(x,t)2^f(x,t)&# @wheref(x,t) is a fluc-
tuating field, e.g., the spin field in the Ising model or t
height of a fluctuating interface# does not change up to tim
t. In all the examples mentioned above, this probability
cays as a power lawP0(t);t2u0, where the exponentu0 is
nontrivial. This nontriviality is due to the fact that the effe
tive stochastic process in time at a fixed point in space
comes non-Markovian due to the coupling to the neighbo
For a non-Markovian process, calculation of any histo
dependent quantity such as persistence is extremely hard
ring a few special cases@10,11#. The exponentu0 has also
been measured in a recent experiment on a liquid-cry
system that has the same dynamics as theT50 Ising model
in two dimensions@12#. The experimental value was in goo
agreement with the analytical prediction ofu0 in two-
dimensional~2D! Ising model@13#. The exponentu0 has also
been measured in a recent experiment on two-dimensi
soap froth@14#.

In the above process, one studied the persistence
single spin ~e.g., in the Ising or Potts model! of the initial
random configuration. A natural generalization of this wou
be to study the persistence of apattern, and not just a single
spin, present in the initial configuration. Persistent patte
are quite abundant in nature. Examples include persis
eddies and vortices in turbulence, the great red spot of J
ter, and certain patterns of stock prices in financial mark
571063-651X/98/57~4!/3757~10!/$15.00
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Another example is the so-called activity-centered pattern
a self-organized system such as an interface in a ran
medium@15# and also in certain models of evolution@16#. A
natural question then is, What is the probability that a giv
pattern survives up to timet?

Such persistent patterns exist also in phase ordering
tems such as theq-state Potts model. For example, one su
pattern is an original domain of a specific color present in
random initial configuration of the Potts model. One can th
ask, What is the survival probability of such a domain up
time t? This quantity for the 1D Potts model has been stud
recently by Krapivsky and Ben-Naim@17#. However, this
can be a more general question for any fluctuating field s
as the solution of diffusion equation with random initial co
figuration or a fluctuating interface approaching the stea
state. In such examples, a domain would be a connected
of points where the sign of the fluctuating field is positive~or
negative!. Another example of ‘‘pattern’’ persistence woul
be to study the probability that two adjacent domains in
initial configuration both survive up to timet. In this paper
we develop a general framework to study the persistenc
patterns of a fluctuating field and discuss a few example
detail where explicit results can be obtained.

The general framework to study some of these patt
persistence problems consists of monitoring the motion o
external test particle launched in the fluctuating field. T
dynamics of the test particle is suitably chosen so that
particle evaluates where the specific pattern of the fluctua
field is and moves there. The persistence of the patter
then precisely the survival probability of the test partic
This led us naturally to study a more general ‘‘persistence
a mobile particle in a field’’ problem~henceforth the PF
problem!, special cases of which correspond to the patt
persistence in the underlying field. In this paper we study
detail a few examples of this general PF problem and fi
very rich, though often nonuniversal, behavior.

The general PF problem can be defined as follows. Le
consider a fieldf(x,t) that fluctuates in both space and tim
3757 © 1998 The American Physical Society
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3758 57SATYA N. MAJUMDAR AND STEPHEN J. CORNELL
For example, the fieldf(x,t) may be the solution of the
simple diffusion equation] tf5¹2f, the order paramete
profile of the Ising model undergoingT50 coarsening dy-
namics, the height profile of a fluctuating interface, or m
even be spatially uncorrelated Brownian signal] tf5h,
whereh(x,t) is spatially and temporally uncorrelated Gaus
ian white noise. A test particle is launched at an arbitr
initial point at time t50. The particle moves according t
some prescribed deterministic or stochastic rules, which
general depend on the local field profile. We now ask
question, Given the dynamics of the particle, what is
probability P(t) that the field ‘‘seen’’ by the particle at its
own location does not change sign up to timet?

The survival probability of a mobile particle in a field ha
been studied before in the context of heterogeneous reac
diffusion systems@6,8# where the test particle was an exte
nal impurity diffusing through a homogeneous backgrou
These studies dealt with a special case of our genera
problem, namely, when the test particle is a simple rand
walker and the field is the coarsening ‘‘color’’ field of th
q-state Potts model atT50 @6,8#. Among other studies on a
similar line was the computation of the trapping time dist
bution of a diffusing tracer particle on a solid-on-solid su
face @18#. In this paper we extend these studies to seve
other examples arising naturally in the context of our gene
PF problem.

In the PF problem one needs to specify the dynamics
the field as well as that of the test particle. For the field,
will consider three different cases, namely, when the fie
are~i! the solution of diffusion equation,~ii ! the spin profile
of the Ising model or in general the color profile of th
q-state Potts model undergoingT50 coarsening dynamics
and~iii ! spatially uncorrelated Brownian signals. The moti
of the test particle, in general, consists of two separ
moves. In the first part of the motion the particle sees
local field profile and then adopts a strategy to move in s
a way so that it can live longer. This is the ‘‘adaptive’’ pa
of the motion that depends on the local field profile. In a
dition to this adaptive move the particle in general may
subjected to an external noise, which constitutes the sec
part of the motion. This ‘‘noisy’’ part consists of Brownia
moves of the particle that is independent of the local fi
profile. While the motion consisting of both adaptive a
noisy moves is more general, for the sake of simplicity
will restrict ourselves to two separate cases when the mo
is either purely adaptive or purely noisy. In the first case,
survival probability is larger than the ‘‘static’’ case~when
the particle is at rest! and in the second case it is smaller.
cases where survival probabilities in both the mobile and
static cases decay as power laws, the exponent inequ
uad<u0<u rw holds, whereuad and u rw are the persistenc
exponents associated with the adaptive and the random
motion of the test particle. The relationship between the s
vival probability of the test particle and the persistence
patterns in the underlying field is established wherever p
sible. In all these studies we will restrict ourselves to o
dimension, although in most cases the generalization
higher dimensions is quite straightforward.

The paper is organized as follows. In Sec. II we consi
the adaptive motion of the test particle. Three cases of
fields are considered. By suitably choosing the adaptive s
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egy, the survival probability of the particle is related to th
of a pattern~original domain in the Potts model or diffusio
equation!. An exact solution is presented for the special ca
when the motion of the adaptive particle is directed and
field is spatially uncorrelated Brownian signals. In Sec.
we consider the noisy motion of the test particle where
performs a simple random walk. Approximate analytic
methods are developed to calculate the exponent chara
izing the power-law decay of the survival probability of th
particle. In Sec. IV a special case of the survival of the d
fusive test particle in the 1D Potts model is shown to
related to the persistence of an initial pattern, namely, t
adjacent original domains. This is also related to the fract
of uncollideddomain walls at timet in the 1D Potts model,
which we study by both numerical and analytical metho
Finally, we conclude with a summary, some suggestions
future directions, and possible experimental realizations
tests of our results. Some details about a variational calc
tion are presented in the Appendix.

II. ADAPTIVE MOTION OF THE TEST PARTICLE

In this section we consider the adaptive motion of the t
particle in which the particle adopts a strategy to move i
way such that it can live longer. The model and the strate
is as follows. Consider a lattice with periodic boundary co
ditions for convenience. The fieldf( i ,t) evolves with time
according to some prescribed dynamics. A test particle
launched att50, at an arbitrary site, say, the origin. Let u
assume that att50 the sign of the fieldf at the origin is
positive ~or negative!. As time changes, the fieldf( i ,t)
changes. As long as the sign of the field at the origin
positive~or negative!, the particle does not move. When th
sign changes at the origin, the particle looks for a nea
neighbor where the field is positive~or negative!. If it finds
such a neighbor it goes there. In case there is more than
neighbor with positive~or negative! fields, it chooses one o
them at random. Then it waits there until the sign off at the
new site changes and then again it moves to one of its
rent neighbors and so on. If at some stage the sign chang
the particle’s current site and it fails to find a neighbor w
positive ~or negative! field, then it dies. Then we ask, Wha
is the probabilityPad(t) that the particle survives up to tim
t? Note that if the particle did not move at all and stayed
at one site only, then the survival probabilityP0(t) is the
usual ‘‘static persistence.’’

We first consider the case when the fieldf(x,t) is the
solution of the simple diffusion equation] tf5¹2f, starting
from a random initial configuration off. For this simple
field, analytical computation of even the static persisten
P0(t) turned out to be quite nontrivial@4#. In one dimension,
it was found that P0(t);t2u0 for large t, where u0
50.120760.0005@4#. The reason for the nontriviality onc
again can be traced to the fact that the effective Gaus
process that a static particle sees in time is non-Markov
Nevertheless, an ‘‘independent interval approximatio
~IIA ! was developed in@4#, which produced analytical pre
dictions foru0 for all dimensions that were extremely acc
rate.

In the case of the moving particle with the adaptive str
egy, we carried out a numerical simulation. The results
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57 3759SURVIVAL PROBABILITY OF A MOBILE PARTICLE . . .
presented in Fig. 1. We findPad(t);t2uad for larget, where
uad50.09160.002, compared tou050.1260.001. Thus, the
strategy adapted by the particle is ‘‘successful’’ in the se
that the exponent, and not just the amplitude, characteri
the decay of persistence decreases. Thus in
renormalization-group language, the adaptive strategy
relevant perturbation.

It is clear from above that the strategy the particle ado
is basically to move towards the local maximum~or mini-
mum! of the underlying field if the initial sign of the field
that the particle sees is positive~or negative!. By symmetry
of the initial condition the survival probability of the particl
does not depend on the initial sign of the field that it se
Hence, without any loss of generality, it is sufficient to co
sider the case when the particle moves only towards a l
maximum. This observation may be used to develop a p
sible continuum approach to this problem. LetR(t) denote
the position of the particle measured from a fixed point
space andx denote the coordinate of an arbitrary point
space measured from the location of the particle. Then
effective field c(x,t) as seen by the particle is given b
c(x,t)5f„x1R(t),t…. Note thatx50 denotes the position
of the particle. Given thatf satisfies the diffusion equation
the equation of motion ofc(x,t) is given by ] tc5¹2c
1Ṙ(t)]xc. We now model the adaptive strategy~namely,
that the particle tries to move towards the local maximu!
by assuming that the velocity of the particle is proportion
to the local slope of the field that the particle sees, i.e.Ṙ
5lc8(0,t), wherec8 denotes the derivative with respect
x andl is a constant. The implication of this assumption
clear. If the local slope is positive the particle moves to
right and if the local slope is negative the particle moves
the left. Thus the particle always tries to move towards
local maximum. So the equation satisfied byc(x,t) is

] tc5¹2c1lc8~x,t !c8~0,t !, ~2.1!

which is a nonlocal and nonlinear Kardar-Parisi-Zhang ty
of equation. Then the adaptive persistence in this formula

FIG. 1. A log-log plot of Monte Carlo simulations of the ‘‘adap
tive’’ persistencePad(t) ~plus symbols! and ‘‘static’’ persistence
P0(t) ~cross! versus timet. The simulations were carried out on
periodic lattice of 100 000 sites and results were averaged ove
samples. The best fit to the straight lines gives the exponent va
uad50.09160.002 andu050.1260.001.
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is the probability that the local fieldc(0,t) does not change
sign up to timet. While a continuum formulation does no
make it easier to compute the adaptive persistence expon
it relates the problem to the more familiar problem of pers
tence of fluctuating interfaces@9#. However, we will not
study this equation any further in the present paper and
defer its discussion to the future@19#.

We now turn to the case when the field is the color fie
of the q-state Potts model undergoingT50 temperature dy-
namics. At each site of a lattice, the field can takeq possible
colors. One starts from a random initial configuration of c
ors. A site is chosen at random and its color is changed
one of its neighbors. This is how the color field evolves.
test particle is launched as usual and it waits at its initial s
until the color of that site changes. Then it tries to find
neighbor with the same color and if succeeds it goes to
neighboring site. When it does not find any neighbor of
own color the particle dies. Then the question is as befo
What is the probabilityPad(t) that the particle survives up to
time t? The corresponding static persistence exponent
been calculated exactly for allq recently@2#.

Our job for calculating the adaptive persistence for t
q-state Potts model is simplified by making the observat
that the test particle survives as long as the original dom
of the Potts model that contained the test particle att50
survives. Thus the adaptive persistence is precisely the
vival probability of an ‘‘original domain’’ that has been stud
ied recently both numerically and analytically within an II
for all q by Krapivsky and Ben-Naim@17#. In fact, even for
the diffusion equation, adaptive persistence is also the
vival probability of an original domain. However, the IIA
developed in@17# for the Potts model cannot be easily e
tended to the diffusion equation for the following reaso
The evolution of the Potts model is particularly simple
terms of the domain walls where the field changes color
space. These domain walls perform independent rand
walks ~the rates of which do not depend on the local spi!
and when two walls meet, they either annihilate@with prob-
ability 1/(q21)# or aggregate@with probability (q21)/(q
22)#. Therefore, for the Potts model it is quite simple
write down an evolution equation forP(n,m,t) ~probability
that a domain of lengthn contains m original domains!
within the IIA @17# and thereby calculate the domain surviv
probability. However, writing down a similar evolutio
equation for the diffusion equation does not seem to be e
as the domain walls in the diffusion equation~i.e., the zeros
of the diffusive field! undergo complicated motion that de
pends upon the local field profile.

However, we want to stress that the concept of adap
persistence is more general than just being equivalent to
persistence of a pattern, e.g., the domain survival probab
in the case of the Potts model or diffusion equation. In fa
it does not necessarily require that the evolving field h
domain structures coarsening in time. For example, eve
the simplest case where at each site of the lattice there i
independent Brownian signal~completely uncorrelated spa
tially!, one can define the adaptive persistence and ha
nontrivial exponent, as we will show below via an exa
solution. In cases when the evolving field has a structure
coarsening domains, the adaptive persistence is equivale
the domain survival probability.

20
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3760 57SATYA N. MAJUMDAR AND STEPHEN J. CORNELL
We now turn to the last case for which we present
exact solution of the adaptive persistence. In this case,
field is spatially uncorrelated Brownian signal at each latt
site ] tf( i ,t)5h( i ,t), whereh( i ,t) is spatially uncorrelated
Gaussian white noise with zero mean and^h( i ,t)h( j ,t8)&
52Dd i , jd(t2t8), whereD is a constant. A test particle i
launched as usual att50 at the origin. Let us assume that th
signal at the origin att50 is positive. The particle does no
move as long as the sign of the signalf at the origin does
not change sign. When it does, the particle either dies w
probability 12p or survives with probabilityp and then tries
to jump to its neighbor on theright-hand side. If the sign of
the signal at that neighbor is positive at the time of jumpin
the particle stays there until the signal is positive there and
on. Finally, if it does not find a right neighbor with a positiv
signal at the moment of jumping, the particle dies. Note
two different aspects in this problem from before. A surviv
factorp is introduced.p51 is the fully adapted case consid
ered earlier for the diffusion equation or the Potts modelp
50 will correspond to the static persistence. The sec
aspect is that the motion of the particle isdirected, in con-
trast to theundirectedcase considered for the diffusion equ
tion or the Potts model. This assumption ofdirectedness
turns out to be important for exact solution and thus serve
a useful exactly solvable toy model of adaptive persisten
It turns out, as we show below, that the exponentuad can be
calculated exactly and depends on the parameterp continu-
ously.

Let P0(t,t0) denote the probability that a Brownian sign
at a given site does not change sign from timet0 to time t.
This is the usual static persistence, which can be rea
computed since it is a Markovian process@10,20#. The con-
ditional probabilityQ(f,tuf0 ,t0) for a Brownian signal to
assume the valuef at time t given that its value wasf0 at
t0 (,t) is obtained by solving the diffusion equation

Q~f,tuf0 ,t0!5
1

A4Dp~ t2t0!
expF2

~f2f0!2

4D~ t2t0!G .
~2.2!

The method of images@20# may be used to express the pro
ability Q1 that the signal changes fromf0 to f without
changing signin the form Q1(f,tuf0 ,t0)5Q(f,tuf0 ,t0)
2Q(f,tu2f0 ,t0), wheref0 andf have the same sign. T
obtain the probability that the process is positive through
the interval (t0 ,t) one multiplies Q1 by the probability
Q(f0 ,t0u0,0) that the process takes the valuef0 at t0 and
integrates over positive values off0 andf; the persistence
probability also contains a symmetric contribution from t
process always being negative, yielding finally

P0~ t,t0!52E
0

`

dfE
0

`

df0Q1~f,tuf0 ,t0!Q~f0 ,t0u0,0!

5
2

p
sin21~At0 /t !. ~2.3!

Let F0(t0 ,t) denote the probability that the signal cross
zero for the first time at timet. Then clearly F0(t0 ,t)
52dP0 /dt. Then the probability of no zero crossin
P(t0 ,t) for the adaptive particle is given by the convolutio
n
he
e

h

,
o

e
l

d

as
e.

ly

t

s

P~ t0 ,t !5P0~ t0 ,t !1~p/2!F0* P01~p/2!2F0* F0* P01•••,
~2.4!

whereF0* P05*F0(t0 ,t1)dt1P0(t1 ,t) and so on. The first
term is the probability that the sign of the signal at the sta
ing site did not change up to timet and hence the particle did
not jump at all. The second term denotes the probability t
the particle jumped once. The parameterp is the survival
factor and 1/2 is the probability that the sign of the signal
the right neighbor~to which the particle jumps! is positive.
The third term denotes the probability that the partic
jumped twice and so on.

To perform the convoluted integrals in Eq.~2.4! we make
a change of variableTi5 ln(ti /t0). In this new variable the
effective process that the particle sees, though not Gaus
becomes stationary. One can then use the Laplace transf
to solve Eq.~2.4!. Let P̃(s), P̃0(s), and F̃0(s) denote the
respective Laplace transforms ofP(T), P0(T), and F0(T).
Then, by taking the Laplace transform of Eq.~2.4!, one gets

P̃~s!5
P̃0~s!

12
p

2
F̃0~s!

. ~2.5!

Using the relationF0(T)52dP0 /dT, one further gets
F̃0(s)512sP̃0(s). This enables us to writeP̃(s) entirely in
terms ofP̃0(s),

P̃~s!5
P̃0~s!

12
p

2
1

ps

2
P̃0~s!

. ~2.6!

We expectP(t0 ,t) to decay ast2uad for large t. This
means that in the variableT5 ln(t/t0), P(T);exp(2uadT)
for large T. This implies that the Laplace transformP̃(s)
will have a pole ats52uad , i.e., the denominator of the
right-hand side of Eq.~2.6! will have a zero ats52uad .
Using P0(T)5(2/p)sin21(e2T/2), one therefore sees that th
exponentuad is given by the positive root of

12
p

2
2

puad

p E
0

`

sin21~e2T/2!euadTdT50. ~2.7!

This integration can be evaluated by parts and one fin
gets

B@1/2,1/22uad#5
2p

p
, ~2.8!

whereB@m,n# is the usual Beta function. It is clear that i
the limit p→0 one recovers the usual static persistence
ponentu051/2. For the fully adapted model (p51), we get
uad50.300 5681 . . . , which agrees very well with our nu
merical simulations. It is also clear that for any nonzerop,
the adaptive exponentuad,u051/2 as expected.

The reason that the exponentuad is exactly soluble for the
directed case is that the effective process seen by the
particle is Markovian. In the undirected case this is not
because the particle can jump back to a site already vis
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57 3761SURVIVAL PROBABILITY OF A MOBILE PARTICLE . . .
before and therefore the probability that the signal is posi
there at the time of current jumping is conditioned by the f
that the signal had crossed zero there at some earlier t
Therefore, it is difficult to computeuad exactly for the undi-
rected case.

III. NOISY MOTION OF THE TEST PARTICLE

In the preceding section we considered the adaptive
tion of the test external noise. In this section we consider
other case when there is only noise and no adaptation. In
case the particle just moves randomly through the medium
which a fieldf(x,t) is evolving according to its own pre
scribed dynamics. As before, the test particle is launche
the origin att50 where the sign of the field is positive~say!
at t50. The particle then performs a Brownian motionṘ
5h(t), where h(t) is a Gaussian white noise with zer
mean and the correlator̂h(t)h(t8)&52Dpd(t2t8). Here
R(t) denotes the position of the particle from some fix
reference point. The motion of the field and that of the p
ticle are completely uncorrelated. The particle dies when
field that it sees changes sign. Then we ask, What is
probability that the particle survives up to timet?

We first consider the case when the fieldf(x,t) is evolv-
ing according to diffusion equation] tf5D f¹

2f. We per-
formed numerical simulation to compute the survival pro
ability of the test particle. This probability decays as a pow
law P(t);t2ud for large t, where the exponentud is found
to depend continuously on the ratio of the two diffusion co
stantsc5Dp /D f . The results are presented in the seco
column of Table I under the headingud(MC). It is clear
from this table that for any nonzeroc, ud(c).u0, where
u0 is the corresponding static persistence exponent,
whenc50. This continuous nonuniversal dependence ofud

TABLE I. Estimates of the persistence exponents of a diffus
tracer particle through an external field evolving via diffusion eq
tion. For different values of the ratioc5Dp /D f as shown in col-
umn 1, exponents are obtained in column 2 by direct Monte C
simulation of the process (uMC), in column 3 by simulating a
Gaussian stationary process with the correlatorf (T)5@cosh(T/2)
1csinh(uTu/2)#21/2(uGS), in column 4 by using the variational est
mateuvar for the above Gaussian stationary process with correl
f (T), and in column 5 by using the rigorous upper boundumax for
the above Gaussian process. Monte Carlo simulations were ca
out on a periodic lattice of 100 000 sites and the results were a
aged over 20 samples.

c ud(MC) ud(G) uvar umax

0.5 0.2060.01 0.19060.005 0.189 0.210
1.0 0.2660.01 0.2551/4 1/4 1/4
2.0 0.3560.01 0.32560.005 0.319 0.350
3.0 0.4260.01 0.38960.005 0.363 0.442
4.0 0.4860.01 0.43960.005 0.396 0.528
5.0 0.5360.01 0.49660.005 0.422 0.611
6.0 0.5860.01 0.52760.005 0.444 0.688
7.0 0.6260.01 0.57960.005 0.463 0.776
8.0 0.6560.01 0.62860.005 0.479 0.839
9.0 0.6960.01 0.69460.005 0.493 0.912

10.0 0.7360.01 0.72360.005 0.505 0.984
e
t
e.
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e
e
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.,

on c, however, is not very surprising for the following rea
son. The test particle dies whenever it crosses any ‘‘zero’
the fieldf(x,t). Thus two zeros of the field on either side
the test particle act like two boundary walls. However, the
walls are not static. They themselves are moving as the fi
f(x,t) is evolving in time. In fact, since the typical distanc
between zeros of the diffusing field increases asAt, the walls
bounding the test particle are therefore diffusing asAt. This
particular case is known to be marginal@21# in the sense tha
the exponent, characterizing the power-law decay of surv
probability of the particle, depends continuously on the ra
of the diffusion constants of the particle and the walls.

While this explains qualitatively whyud depends continu-
ously onc, it does not give any quantitative estimate of t
exponent. To make progress in that direction, we procee
follows. Letx be the coordinate of an arbitrary point in spa
measured from the rest frame of the particle. Then the fi
c(x,t)5f„x1R(t),t… as seen by the particle evolves as

]c

]t
5D f¹

2c1
]c

]x
h~ t !. ~3.1!

The field c and the noiseh are completely uncorrelated
Note that for a given realization of the noise process$h(t)%,
the processc(x,t) at a fixedx as a function oft is a Gauss-
ian process. However, when the distribution ofh(t) is also
taken into consideration,c(x,t) at a fixedx no longer has a
Gaussian distribution due to the multiplicative nature of t
noise in Eq.~3.1!. It is nevertheless useful to calculate th
two-time correlatorC(t8,t)5^c(0,t8)c(0,t)& that character-
izes the temporal process at the location of the particle,
at x50. This can be easily performed in thek space where
the solution is given by

c~k,t !5c~k,0!e2D fk
2texpS ikE

0

t

h~ t8!dt8D . ~3.2!

We then computeC(t8,t)5*dk^c(2k,t8)c(k,t)&, where
the average, denoted by angular brackets, is taken over
the initial conditions ofc and the history of the noiseh. The
initial condition is taken to be random, so that^c(k,0)c
(2k,0)&5D, whereD is a constant. Since the noiseh is
Gaussian white noise, we use the prope
^exp(ik*t8

t h(t1)dt1&5exp@2Dpk
2ut2t8u#. It is then easy to see

that in d51,

C~ t8,t !5
1

2Ap

1

AD f~ t1t8!1Dput2t8u
. ~3.3!

The normalized autocorrelator f (t8,t)5C(t8,t)/
AC(t8,t8)C(t,t), when expressed in terms of the variab
T5 ln(t), becomes stationary, i.e., only a function of the tim
differenceuT2T8u. Denoting, for convenience, this time dif
ference byT, one finds that the stationary autocorrelat
f (T) is given by

f ~T!5
1

Acosh~T/2!1csinh~ uTu/2!
, ~3.4!

wherec5Dp /D f is the ratio of the two diffusion constants
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Note that forc50, f (T) reduces to the static autocor
elator f 0(T)5@cosh(T/2)#21/2 @4#. However, there is an im
portant difference betweenc50 andcÞ0 cases. Forc50,
the stochastic stationary process, whose correlator is g
by f 0(T), is Gaussian. However, forcÞ0, while the process
is still stationary in the variableT, it is non-Gaussian, a
mentioned earlier. This is evident from Eq.~3.2! since
c(k,t) is a product of two random variablesc(k,0) and
exp@ik*h(t8)dt8# and hence is not clearly Gaussian, ev
though bothc(k,0) and h(t) are individually Gaussian
Therefore, the approximate method developed@4# for the
casec50 to compute the asymptotic distribution of the i
terval between successive zero crossingsP0(T)
;exp(2u0T);t2u0 for large t cannot be simply extended t
the cÞ0 case.

It is nevertheless useful to calculateud by approximating
the process by a Gaussian process having the same two-
correlator for two reasons. First, a comparison betweenud
obtained numerically for the actual process and that obta
for the corresponding Gaussian process will tell us how
portant the non-Gaussian effects are. Second, there
been some recent developments@13# in approximate analyti-
cal calculations of the exponent for Gaussian stationary p
cesses that one can use in the present context. Therefo
the following, our strategy would be to estimate the expon
ud(G) @which characterizes the exponential decay of the d
tribution of intervals between successive zero crossi
P(T);e2ud(G)T for large T# for the Gaussian process wit
the correlatorf (T) as in Eq.~3.4! and then compare it with
the ud for the actual process.

We first present the numerical results forud(G) for the
Gaussian process with the correlator as in Eq.~3.4!. This is
done by constructing a time series having the same corr
tion function. It is most convenient to work in the frequen
domain rather than the time domain. Details of this simu
tion procedure can be found in Ref.@9#. The results ofud(G)
for different values ofc are presented in the third column o
Table I. By comparing columns 2 and 3, it is evident that
non-Gaussian effects are indeed quite small and the Gau
approximation seems to be quite good.

However, exact analytical calculation ofud(G) even for a
Gaussian stationary process with a general correlatorf (T) is
difficult and has remained an unsolved problem for ma
years@10,11#. Exact results are known only in a few spec
cases@10,11#. One such case is whenf (T)5e2l0uTu for all T.
In this case, the Gaussian process is a Markov process
one can show exactly thatP(T);e2uT for largeT whereu
5l0. By looking at f (T) in Eq. ~3.4!, we see that forc
51, f (T)5e2uTu/4 for all T. Therefore,ud(G)51/4 for c
51. Forc close 1, say,c511e, one can use a perturbatio
theory that has been developed recently to calculateud for
processes that are close to a Markov process@13,22#. Ac-
cording to this theory, iff (T)5exp(2luTu)1ef1(T), wheree
is small, then the exponentud , to ordere, can be most easily
expressed as

ud~G!5lS 12e
2l

p E
0

`

f 1~T!@12exp~22lT!#23/2dTD .

~3.5!

In our case, expandingf (T) in Eq. ~3.4! aroundc51, we get
en

int

d
-
ve

o-
, in
t
-
s

la-

-

e
ian

y
l

nd

l51/4 andf 1(T)521/2sinh(T/2)exp(23T/4). Using this in
Eq. ~3.5! and performing the integration, we get, to ordere,

ud~G!5
1

4
1e

3

32
. ~3.6!

This perturbation theory may not give good estimates
ud(G) whenc is far away from 1. However, one can use
variational estimate forud(G) for generalc. This variational
method was developed recently in Ref.@13# by mapping the
zero crossing problem to that of the evaluation of groun
state energy of a corresponding quantum problem. T
method was used@13# to approximately calculate the stat
persistence exponent for the Ising model in both one and
dimensions. The results were in good agreement@13# with
the exact result in one-dimension@2# and numerical simula-
tions @23# as well as direct experiment@12# in two dimen-
sions. This method works for class-1 Gaussian station
processes, i.e., whenf (T)512auTu1••• for smallT. Since
in our present casef (T) in Eq. ~3.4! is class 1 for any non-
zero c, one can estimateud(G) by using this variational
method. This method gives two estimatesumax anduvar for
the exponentud(G). While umax is a strict rigorous upper
bound for ud(G), uvar gives the best variational estimat
The salient features of the variational method and the exp
sions forumax anduvar are given in the Appendix.

For the process being considered with the correlator a
Eq. ~3.4!, estimatesuvar and umax are presented, respec
tively, in columns 4 and 5 of Table I for different values o
the parameterc. Comparing these with columns 2 and 3, it
clear that the variational approximation gets progressiv
worse asc increases. A visual summary of these differe
measures of the exponent is given in Fig. 2.

To summarize, we find that the exponentud depends con-
tinuously on the ratioc of the diffusion constants. For an
arbitrary nonzeroc, ud.u0, whereu0 is the corresponding
static persistence exponent. Non-Gaussian effects are fo
to be quite small.

We now turn to the case when the fluctuating field is t
spin field of the Ising model or, in general, the color field
theq-state Potts model undergoingT50 coarsening dynam
ics starting from a random initial configuration. The trac

FIG. 2. Visual summary of the different measures of the ex
nentud as given in Table I.
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particle once again moves diffusively through the medi
with a diffusion constantDp and whenever the field that th
particle sees at its own location changes sign, the par
dies. As before, one is interested in calculating the surv
probability P(t) of the tracer particle.

In theq-state Potts model atT50, the domain walls per-
form a random walk and whenever two domain walls me
they either annihilate each other with probability 1/(q21) or
coagulate to form a single wall with probability (q22)/(q
21) @2,24#. The tracer particle dies whenever it cross
paths with any domain wall. One expects that the survi
probability of the tracer particle will decay asP(t);t2up for
larget. The exponentup(q,c) is expected, as in the diffusio
case, to depend continuously onq and the ratio c
5Dp /D f , where Dp is the diffusion constant of the tes
particle andD f is that of the domain walls.

This problem has been studied in some detail before@6,8#.
Let us just summarize here the main results that are alre
known. In the limitq→`, up(`,c) can be computed exactl
by noting that only two domain walls on either side of t
tracer particle actually matter for the calculation ofP(t)
@25#. One finds exactlyup(`,c)5p/$2 cos21@c/(11c)#%
@25,6#. Note that forc50 this reduces to the static persi
tence exponentup(`,0)51 @2#. In the Ising limitq52, how-
ever, there is no exact result for generalc. An exact result is
available only forc50, up(2,0)53/8 @2#. For generalc and
q52, a mean-field Smoluchowski type of approach was
veloped@6#, whose predictionsup(2,c)5A(11c)/8 were in
good agreement with numerical simulations@6#. However,
this Smoluchowski approach, when extended to the largq
limit, differed substantially@6# from the exactq→` result.
Finally, a perturbation theory has been developed recentl
Monthus@8# and the exponentup(q,c) has been determine
at first-order perturbation inq21 for arbitraryc and at first
order inc for arbitraryq.

We will not study this exponentup(q,c) in its generality
any further in this section. However, in the next section,
will study in some detail the special casec51, as it turns out
to be a particularly interesting case from the point of view
the pattern persistence problem of the Potts model.

IV. PERSISTENCE OF A SPECIFIC PATTERN
IN THE 1D POTTS MODEL

In Sec. II we showed that the survival probability of a
adaptive test particle is related to the persistence of a spe
pattern, namely, an original domain in theT50 dynamics of
the Potts model. In this section, we show that the surv
probability of a noisy or diffusive test particle~studied in
Sec. III! is also related to the persistence of yet another p
tern in the 1D Potts model, namely, the survival up to timt
of two adjacent original domains present in the initial co
figuration.

Let us consider the zero-temperature coarsening dyna
of theq-state Potts model starting from a random initial co
figuration. In an infinitesimal time intervaldt, each spin
changes its color to that of one of its neighbors selecte
random. These dynamics can be equivalently formulated
terms of the motions of domain walls. The domain wa
perform independent random walks and whenever two w
meet, they either annihilate with probability 1/(q21) or ag-
le
l

t,

s
l

dy

-

-
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e
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gregate to become a single wall with probability (q22)/(q
21) @3,24#. The static persistence then is the probability th
a fixed point in space is not traversed by any domain w
However, a somewhat more natural quantity in this dom
wall representation is the probabilityP1(t) that a given do-
main wall remains uncollided up to timet. A little thought
shows that this is precisely the survival probability of tw
adjacent domains present in the initial configuration. W
show below thatP1(t);t2u1 for large t, whereu1(q) is a
q-dependent exponent that is not obviously related to
other known exponent via scaling relations.

In Sec. III we considered the exponentup(q,c) character-
izing the decay of the survival probability of a diffusing te
particle in the background of the diffusing domain walls
the Potts model. The parameterc is the ratio of the diffusion
constant of the test particle to that of the domain walls. L
us consider the casec51. In this case the test particle cann
be distinguished from the other diffusing domain wal
Since the test particle dies whenever any other domain w
touches it, it is clear that the survival probability of the te
particle for c51 is precisely the fraction of uncollided do
main walls in the Potts model and henceu1(q)5up(q,c
51).

Clearly, u1 can be determined exactly in the two limi
q52 andq→`. For q52, since there is only annihilation
upon contact between domain walls, the fraction of unc
lided walls is the same as the density of domain walls t
decays as;t21/2 for large t and henceu1(2)51/2. In the
q→` limit, by settingc51 in the exact formula,up(`,c)
5p/$2 cos21@c/(11c)#% @25,6#, one getsu153/2. For inter-
mediate values ofq, we present numerical results in colum
2 of Table II. It is clear that the exponentu1(q) increases
monotonically withq.

The exponentu1 can be quite easily computed withi
mean-field theory. LetN(t) andN1(t) denote, respectively
the total density of domain walls and density of uncollid
walls at timet. Let Q1(t) denote the density of domains o
size 1 ~here 1 is the lattice spacing and hence the smal
interval size!. ThenN(t) andQ1(t) are related via the exac
relation

TABLE II. Exponentu1 that characterizes the asymptotic dec
P1(t);t2u1, the probability that a domain wall remains uncollide
up to timet in the zero-temperature dynamics of theq-state Potts
model. Exact values ofu1 are quoted forq52 andq→`. For other
values ofq, u1 ~column 2! is estimated from Monte Carlo simula
tions on a periodic lattice of 75 000 sites and results averaged
20 different initial conditions. The estimated upper bounds
u1(q) ~as explained in the text! are presented in column 3.

q u1 u1(max)

2 1/2
3 0.7260.01 0.792481 . . .
4 0.8660.01 0.9160.01
5 0.9560.01 1.0060.01
6 1.0460.01 1.0660.01
50 1.4760.01
` 3/2
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dN

dt
52

q

q21
Q1 . ~4.1!

However, there is no such simple exact relationship betw
N1(t) andQ1(t). However, if one neglects correlations, it
easy to write such a relationship within mean-field theory

dN1

dt
522S N1

N D 2

Q122
N1

N S 12
N1

N DQ1 , ~4.2!

where the first term on the right-hand side represents
annihilation of two uncollided walls and the second the co
tribution from annihilation of an uncollided wall with a co
lided wall. EliminatingQ1 from the two equations above, w
get N1;N2(q21)/q. Using the resultN(t);t21/2, we finally
obtain u1(q)5(q21)/q, within mean-field theory. While
the mean-field answer is exact forq52, it gets worse asq
increases as evident by comparison with Table II. Pres
ably, the mean-field value forms a lower bound to the t
exponent value, though we have not been able to prove

However, one can obtain rigorous upper bounds tou1(q)
as follows. This can be done by generalizing the argume
used by Derrida@3# to obtain upper bounds to the static pe
sistence exponentu0(q). The argument goes as follows.
was noted by Monthus@8# that the problem of a diffusing
tracer particle moving among the domain walls of the Po
model can be mapped to a reaction diffusion problem wh
particles are generated from a source that is diffuse aro
and aggregate upon contact. The only difference from
static case@3# was that the source is now moving. In fact, t
source diffuses with the same diffusion constant as the tr
particle. It is then possible to write the survival probabili
P1(t) as @8#

P1~ t !5(
1

`

P~m,t !q12m, ~4.3!

whereP(m,t) is the probability of havingm particles in the
corresponding reaction diffusion problem. Writing the abo
equation forq5q2 as (a>1)

P1~q2!

q2
5 (

m51

`

P~m,t !q2
2m5( P~m,t !@q1

2m# lnq2 /lnq1

~4.4!

and then using Jensen’s inequality (^xa&>^x&a for a>1 and
x a positive random variable! as was used in the static ca
@3#, we immediately obtain the inequality

u1~q2!< u1~q1!
lnq2

lnq1
~4.5!

for q2>q1. For example, using the exact resultu151/2 for
q52 and the above inequality we get

u1~q!< lnq/2ln2. ~4.6!

For q53 this givesu1(3)<0.792 481 . . . , which should be
compared with its numerical value 0.7260.005. For higher
values ofq, one can have a numerical estimate of a tigh
upper bound ofu1(q) by using the numerical value o
n

e
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e
.

ts
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u1(q21) in the inequality~4.5!. This would be an improve-
ment over the exact bound~4.6! obtained by comparing with
q52. These improved numerical boundsu1(max) are pre-
sented in column 3 of Table II.

It was pointed out by Monthus@8# that carrying out the
same formalism that led to the exact determination of
static persistence exponentu0(q) @2# is not as straightfor-
ward as computing the exact value ofup(q,c) for generalc.
However, one may hope that some special simplificatio
might occur forc51, leading to the exact computation of th
exponentu1(q), though we have not succeeded yet in th
direction.

V. SUMMARY AND CONCLUSIONS

In this paper we have studied the persistence of so
patterns present in the initial configuration of a fluctuati
field. It was shown that some of these pattern persiste
problems are related to the survival probability of a mob
particle launched into the field. By suitably adjusting t
rules of the dynamics of the particle one can study the p
sistence of different patterns in the underlying field. This l
us to study the PF problem in general. Several special c
were studied in detail and different results were derived.

It is clear from our study as well as others that there i
whole hierarchy of exponents associated with the decay
persistence of different patterns in the phase-ordering
tems. It is not clear at present whether or not these expon
are independent of each other. While these exponents do
depend on the details of the initial configuration~as long as it
is short ranged!, it is not clear whether they can be consi
ered universal and if so, in what sense. For example, if
diffusion constant of any single domain wall of the Po
model changes slightly, then the exponentu1 characterizing
the decay of survival of the wall~probability that it remains
uncollided! also changes. Clearly, in this respect the exp
nent is nonuniversal. So the important question that rema
to be answered is, What are the criteria one should us
decide whether or not an exponent in the phase-ordering
namics is universal?

One of the interesting extensions of the present w
would be to study the PF problem when the fluctuating fi
is the height of an interface in or approaching the stea
state. The static persistence for interfaces has been stu
recently in some detail@9#. Also anomalous diffusive behav
ior of a tracer particle on a solid-on-solid surface was no
@18# and was attributed to the temporary trapping or burial
the particle in the bulk of the crystal. In addition, given th
sophisticated techniques using scanning tunneling mic
scope already exist for determining temporal step fluct
tions on crystal surfaces@26#, it is not unreasonable to hop
that such techniques may be refined in the future to mea
the survival probabilities of the static as well as the mob
particle in a fluctuating interface.

Finally, it has been noted recently@27# that static persis-
tence exponent for the diffusion equation may possibly
measured in dense spin-polarized noble gases (3He and
129Xe) using NMR spectroscopy and imaging@28#. In these
systems the polarization acts like a diffusing field. With
slight modification these systems may possibly be used
measure the persistence of some patterns of the diffu
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field as discussed in the present paper.
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APPENDIX: THE VARIATIONAL METHOD

It was shown in@13# that the exponentud(G) is exactly
the ground-state energy differenceud(G)5E12E0 between
two quantum problems, one with a hard wall at the orig
and the other without a wall. The energyE0 ~without a wall!
can be determined exactly,

E05
1

2pE0

`

lnS G~v!

v2 Ddv, ~A1!

whereG(v)51/ f̃ (v) and f̃ (v) is the Fourier transform o
the correlation functionf (T) of the Gaussian stationary pro
cess normalized such thatf̃ (v);v22 for largev. The en-
ergy E1 ~with a wall at the origin! is estimated variationally
as it is hard to obtain exactly. For class-1 processes, one
use a harmonic oscillator with a wall as the trial state w
the frequencyv0 of the oscillator as the variational param
eter. The variational energyE1(v0) is given by the expres
sion @13#

E1~v0!5v0F3

2
1

2

pS G~0!

v0
2 21D1

2

pE0

`

dxS G~xv0!

v0
2

2x221DS~x!G , ~A2!

whereS(x)5(n51
` ncn /(x214n2) with cn given by

cn5
4

p22n~2n11!! F ~2n!!

n! ~2n21!G
2

. ~A3!

One then minimizesE1(v0) with respect tov0 and uses this
minimizing frequencyvmin to obtain the variational estimat
. E

ys

. E
-
e

m

an

umax5E1(vmin)2E0(vmin), which also is a rigorous uppe
bound to the true exponentud(G) that characterizes the
Gaussian process. However, as argued in@13#, one can ob-
tain a better estimate ofud(G) by using uvar5E1(vmin)
2E0

(2)(vmin), whereE0
(2) is given by

E0
~2!5vminF1

2
1

1

2pE0

`

dxS G~xvmin!

vmin
2 ~x211!

21D G . ~A4!

For numerical purposes, it is convenient to reformula
these expressions in terms of integrals in the time domain
the form

E1~v0!5v0H 3

4
1

2

pv0
2F 1

f̃ ~0!
1gS 3p

8
21D G

2
1

v0
2E

0

`

dTg~T!V~v0T!J , ~A5!

E0
~2!5

vmin

4
1

g

4vmin
2

1

2vmin
E

0

`

dTg~T!e2vminT,

~A6!

where

V~x![
4

pF211
3

4
~12e22x!1/21S e2x

2
1

ex

4 D sin21~e2x!G ,
~A7!

g[ lim
v→`

S 1

f̃ ~v!
2v2D 522

d3

dT3 f ~T!U
T50

, ~A8!

and

g~T![
1

2pE2`

`

dve2 ivTS 1

f̃ ~v!
2v22g D . ~A9!

Apart from the convenience of integrands with exponen
rather than algebraic tails at large values of the integra
variable, the real-space formulation has the bonus of not h
ing to evaluate a sum at each point in the integration dom
as in Eq.~A2!.
y,
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