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How many eigenvalues of a Gaussian random matrix are positive?
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We study the probability distribution of the index N+, i.e., the number of positive eigenvalues of an N × N

Gaussian random matrix. We show analytically that, for large N and large N+ with the fraction 0 � c = N+/N �
1 of positive eigenvalues fixed, the index distribution P(N+ = cN,N ) ∼ exp[−βN2�(c)] where β is the Dyson
index characterizing the Gaussian ensemble. The associated large deviation rate function �(c) is computed
explicitly for all 0 � c � 1. It is independent of β and displays a quadratic form modulated by a logarithmic
singularity around c = 1/2. As a consequence, the distribution of the index has a Gaussian form near the peak,
but with a variance �(N ) of index fluctuations growing as �(N ) ∼ ln N/βπ2 for large N . For β = 2, this result
is independently confirmed against an exact finite-N formula, yielding �(N ) = ln N/2π2 + C + O(N−1) for
large N , where the constant C for even N has the nontrivial value C = (γ + 1 + 3 ln 2)/2π2 � 0.185 248 . . .

and γ = 0.5772 . . . is the Euler constant. We also determine for large N the probability that the interval [ζ1,ζ2]
is free of eigenvalues. Some of these results have been announced in a recent letter [Phys. Rev. Lett. 103, 220603
(2009)].

DOI: 10.1103/PhysRevE.83.041105 PACS number(s): 02.50.−r, 02.10.Yn, 24.60.−k

I. INTRODUCTION

Statistical properties of eigenvalues of random matrices
have been extensively studied for decades, stemming from the
seminal work of Wigner [1]. Random matrix theory (RMT)
has successfully provided tools and methods to disparate areas
of physics and mathematics [2], with countless applications
so far. Statistics of several random variables associated with
random eigenvalues have been studied extensively. These
include the length of a gap in the eigenvalue spectra, number
of eigenvalues in a given interval, the largest eigenvalue, the
trace, etc. [2]. Most studies concerned the probability of typical
fluctuations of such a random variable around its mean.

However, various recent applications of random matrix
theory have posed questions regarding atypical large fluctu-
ations of such random variables associated with the eigen-
values, thus triggering a number of recent studies on the
large deviation probabilities of such random variables. This
includes, for instance, the large deviation probability of the
extreme (maximum and minimum) eigenvalues of Gaussian
[3–7] and Wishart random matrices [4,8,9], of the number of
stationary points of random Gaussian landscapes [10,11], of
the distribution of free energies in mean-field spin glass models
[12,13], of the conductance and shot noise power in chaotic
mesoscopic cavities [14,15], of the entanglement entropy of a
pure random state of a bipartite quantum system [16–19], and
of the mutual information in multiple-input multiple-output
channels [20]. In addition, random matrix theory has been used
to understand large deviation properties of various observables
in the so called vicious walker (or nonintersecting Brownian
motion) problem [21–24]. The purpose of the present paper is
to provide a detailed analysis of the large deviation properties
of another natural random variable for large Gaussian matrices,
namely, the fraction c of positive eigenvalues of an N × N

Gaussian matrix. Some of the main results presented here were
announced in a recent Letter [25]. We will explain shortly why

this fraction c is a natural observable that arises in a number of
physical situations. But before we do that, it is useful to recall
some well-known facts about Gaussian matrices.

There are three families of Gaussian random matrices
with real spectrum: orthogonal (GOE), unitary (GUE) and
symplectic (GSE) ensembles. The N × N matrices belonging
to these families are real symmetric, complex Hermitian, and
quaternion self-dual, respectively, whose entries are indepen-
dent Gaussian variables (real, complex, or quaternions) labeled
by the Dyson index β = 1,2,4, respectively. The probability
distribution of the entries of a matrix M is then given by the
Gaussian weight:

P(M) ∝ exp

(
−β

2
(M,M)

)
, (1)

where (M,M) stands for the inner product on the space of
matrices invariant under orthogonal, unitary, and symplectic
transformations, respectively. Explicitly, one has

(M,M) = Tr(M2), β = 1, GOE, (2)

(M,M) = Tr(M�M), β = 2, GUE, (3)

(M,M) = Tr(M†M), β = 4, GSE, (4)

where � denotes Hermitian conjugation and † the quaternion
self-dual. The celebrated result by Wigner states that for large
matrix size N , the average density of eigenvalues (all real) for
such ensembles has a β-independent semicircular form [1,2]

ρsc(λ,N ) =
√

2

Nπ2

[
1 − λ2

2N

]1/2

(5)

which vanishes identically at the two edges ±√
2N and

is normalized to unity. Clearly, the mean spacing between
eigenvalues in the bulk, i.e., close to the origin, behaves for
large N as δN = 1/[Nρsc(0)] = π/

√
2N .
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A natural and much studied question that goes back to
Dyson [26] is this: how many eigenvalues are there in a
given interval [a,b] on the real line? Clearly this number
N[a,b] is a random variable that fluctuates from one sample
to another. Its mean value, for large N , is easy to compute
by integrating the semicircular average density in (5) over
the interval [a,b]: 〈N[a,b]〉 = N

∫ b

a
ρsc(λ,N )dλ. But how does

this number fluctuate from one sample to another? Dyson
studied this number fluctuation in the so called bulk limit,
i.e., he focused on a small symmetric interval around the
origin [−δNL/2,δNL/2] where δN = π/

√
2N is the mean

bulk spacing and L is kept fixed while one takes the N → ∞
limit. Let NL denote the number of eigenvalues in this interval.
Clearly, the mean number of eigenvalues 〈NL〉 = L. But
Dyson also computed the variance of NL in the large-N limit
(with L fixed) and showed that for large L the variance grows
logarithmically with L,

〈(NL − L)2〉 ≈ 2

π2β
ln(L) + Bβ, (6)

and the constant Bβ was computed by Dyson and Mehta [27].
Thus the typical fluctuations of NL grow as

√
ln L for large L.

More recently, even the higher moments of NL (in the N → ∞
limit with L fixed) were computed, which proved that on a
scale of

√
ln L around the mean L, the random variable NL

has a Gaussian distribution [28,29].
Here our focus will be on a different limit, namely, we

study the statistics of the number of eigenvalues, not on a
small symmetric interval around the origin (i.e., the bulk
limit), but rather on the full unbounded interval [0,∞]. In
other words, we are interested simply in the distribution of
the number of positive eigenvalues N+ (called the index) of a
Gaussian random matrix M. Since the average density of states
is symmetric in λ, it is clear that on average there are 〈N+〉 =
N/2 positive eigenvalues. Clearly the index N+ fluctuates from
one realization of the matrix to another and in this paper, we
are precisely interested in the fluctuation properties of the
random variable N+, i.e., in the full probability distribution
P(N+,N ). Evidently, 0 � N+ � N . Also, the number of
negative eigenvalues N− = N − N+ is distributed identically
as the number of positive eigenvalues N+ by virtue of the
Gaussian symmetry, indicating P(N+,N ) = P(N − N+,N ).
Hence the distribution P(N+,N ) of N+ is clearly symmetric
around its mean value 〈N+〉 = N/2. It thus suffices to study
the range N/2 � N+ � N .

So, why are we interested in this index distribution? This
question naturally arises in the study of the stability pat-
terns associated with a multidimensional potential landscape
V (x1,x2, . . . ,xN ) [30]. For instance, in the context of glassy
systems, the point {xi} represents a configuration of the system
and V ({xi}) is just the energy of the configuration [31].
Similarly, in the context of disordered systems or spin glasses,
V ({xi}) may represent the free energy landscape. In the context
of string theory, V may represent the potential associated
with a moduli space [32]. Typically such an N -dimensional
landscape has many stationary points (minima, maxima, and
saddles) with complex stability patterns that play an important
role in both statics and dynamics of such systems [30]. The
stability of a stationary point of this N -dimensional landscape

is decided by the N real eigenvalues of the (N × N ) Hessian
matrix Mi,j = [∂2V/∂xi∂xj ] which is symmetric. If all the
eigenvalues are positive (negative), the stationary point is a
local minimum (local maximum). If some, but not all, are
positive then the stationary point is a saddle. The number
of positive eigenvalues (the index), 0 � N+ � N , is then
a key object that determines in how many directions the
stationary point is stable. Given a random potential V , the
entries of the Hessian matrix at a stationary point are usually
correlated. However, in many situations, important insights can
be obtained by ignoring these correlations and assuming that
the entries of the Hessian matrix are just independent Gaussian
variables. This then leads to the study of the statistics of index
for a GOE matrix. This toy model, called the random Hessian
model (RHM), has been studied extensively in the context of
disordered systems [31], landscape-based string theory [33],
and also in quantum cosmology [34]. Although in the RHM
β = 1, it is quite natural to study the index distribution for
other Gaussian ensembles, namely, for the GUE (β = 2) and
GSE (β = 4).

For the GOE (β = 1), the statistics of N+ was studied by
Cavagna et al. [31] using supersymmetric replica methods and
some additional approximations. They argued that around its
mean value N/2, the random variable N+ has typical fluctua-
tions of O(

√
ln N ) for large N . Moreover, the distribution of

these typical fluctuations is Gaussian. In other words, over a
region of width

√
ln N , the distribution for large N is given

by [31]

P(N+,N ) ≈ exp

[
− π2

2 ln(N )
(N+ − N/2)2

]
, (7)

implying that for β = 1, �(N ) = 〈(N+ − N/2)2〉≈ ln(N )/π2

for large N .
On the other hand, this Gaussian form does not describe the

atypically large fluctuations of N+. For example, in the extreme
limit when N+ = N , the probability that all eigenvalues are
positive P(N+ = N,N ) was computed recently for large N

and for all β [3],

P(N+ = N,N ) ≈ exp[−βθN2]; θ = 1
4 ln(3). (8)

This question of the probability of extremely large fluctuation
of N+ [fluctuation on a scale ∼O(N ) around its mean N/2]
naturally came up in several recent contexts such as in
landscape-based string theory [33], in quantum cosmology
[34], and in the distribution of the number of minima of a
random polynomial [35].

These two rather different forms of the distribution
P(N+,N ) in the two limits, namely, in the vicinity of N+ =
N/2 (over a scale of

√
ln N ) [as in (7)] and when N+ = N

[as in (8)] raise an interesting question: what is the form of
the distribution P(N+,N ) for intermediate values of N/2 �
N+ < N? In other words, how does one interpolate between
the limits of typically small and atypically large fluctuations?
To answer this question, it is natural to set N+ = cN where the
intensive variable 0 � c � 1 denotes the fraction of positive
eigenvalues and study the large-N limit of the distribution
P(cN,N ) with c fixed. Again, due to the Gaussian symmetry,
P(cN,N ) = P((1 − c)N,N ) and it is sufficient to restrict c in
the range 1/2 � c � 1.
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In a recent Letter [25], we computed the large-N limit of
the distribution P(cN,N ) in the full range 0 � c � 1 for all
β > 0 and showed that

P(cN,N ) ≈ exp[−β N2 �(c)], (9)

where the rate function �(c) = �(1 − c), independent of β,
was computed explicitly for all 1/2 � c � 1,1 [see Eq. (92)
for our main result, namely, the explicit final expression for
�(c)]. The fact that the logarithm of the probability is ∼O(N2)
for fixed c is quite natural, as it represents the free energy
of an associated Coulomb fluid of N charges (eigenvalues)
(to be discussed in detail later). The Coulomb energy of N

charges clearly scales as ∼O(N2). In the limit c → 1, we get
�(1) = θ = ln(3)/4 in agreement with (8). The distribution is
thus highly non-Gaussian near its tails. In the opposite limit
c → 1/2, we find a marginally quadratic behavior, modulated
by a logarithmic singularity

�(c) � −π2

2

(c − 1/2)2

ln |c − 1/2| . (10)

Setting c = N+/N and substituting this form in (9), we find
that in the vicinity of N+ = N/2 and over a scale of

√
ln N ,

indeed one recovers the Gaussian distribution

P(N+,N ) ≈ exp

[
− β π2

2 ln(N )
(N+ − N/2)2

]
, (11)

thus proving that the variance �(N ) = 〈(N+ − N/2)2〉 ≈
ln(N )/βπ2 for large N and for all β. For β = 1, this perfectly
agrees with the results of Cavagna et al. [31].

In addition to obtaining the full distribution P(cN,N ) of the
fraction of positive eigenvalues c, our Coulomb gas approach
also provides the following:

(a) A method of finding solutions to a singular integral
equation with two disconnected supports, as discussed in detail
later. This method is rather general and can be fruitfully applied
to other related problems in RMT; an example is later provided
in the paper (see Sec. IV) in calculating the probability that an
interval [ζ1,ζ2] is free of eigenvalues, i.e., there is a gap [ζ1,ζ2]
in the spectrum.

(b) The spectral density of Gaussian matrices having a
prescribed fraction c of positive eigenvalues. Outside the limit-
ing situations c = 1/2 and c = 1, this density has generically
a support consisting of two disconnected components [see
Eq. (32) and Figs. 1 and 2].

The details of these calculations are somewhat involved and
were not presented in our previous Letter [25]. The purpose of
this paper is to provide these details which we believe will be
important for other problems as well.

The paper is organized as follows. In Sec. II A we set up the
problem and show that the rate function can be computed via
the solution of a singular integral equation on a disconnected
support. In Secs. II B and II C, we provide two different
strategies to find such a solution, the first based on a scalar

1Hereafter, the notation ≈ stands for the precise asymptotic law
limN→∞ [− ln P(cN,N )/(βN2)] = �(c).

Riemann-Hilbert ansatz and the second based on an iterated
application of a theorem by Tricomi. In Sec. II D we derive
the free energy of the associated Coulomb gas and the large
deviation function �(c) associated with the index distribution.
In Sec. II E we provide an asymptotic analysis of �(c) near
c = 1/2 and determine the variance of the index for large
matrix size N . In Sec. III we provide details of numerical
simulations. As an application of the general method for
solving two-support integral equation, we compute in Sec. IV,
the probability that a Gaussian random matrix has a gap
[ζ1,ζ2] in the spectrum. In Sec. V we offer a derivation of
a determinantal formula for the variance of the index at finite
N for β = 2. Finally, we conclude with a summary in Sec. VI.

II. THE PROBABILITY DISTRIBUTION OF THE INDEX

A. Setting and notation

We consider the standard Gaussian ensembles of ran-
dom matrices with Dyson index β = 1,2,4, corresponding
to real, complex, and quaternion entries, respectively. The
probability distribution of the entries is given in (1) and
consequently the joint probability density of eigenvalues
reads [2]

P(λ1, . . . ,λN ) = 1

ZN

exp

(
−β

2

N∑
i=1

λ2
i

)∏
j<k

|λj − λk|β (12)

where ZN is the normalization constant which can be explicitly
computed via a Selberg-like integral [2] and to leading order
for large N , ZN ≈ exp(−β�0N

2) where �0 = (3 + 2 ln 2)/8
[3].

We wish to compute the probability distribution P(N+,N )
of the index N+, defined as the number of positive eigenvalues
of the N × N matrix M:

N+ =
N∑

i=1

θ (λi). (13)

By definition,

P(N+,N ) = 1

ZN

∫
(−∞,∞)N

∏
i

dλi exp

(
−β

2

N∑
i=1

λ2
i

)

×
∏
j<k

|λj − λk|βδ

(
N+ −

N∑
i=1

θ (λi)

)
. (14)

We will set N+ = cN where 0 � c � 1 is the fraction of
positive eigenvalues. As mentioned in the Introduction, due to
the Gaussian symmetry, the number of positive eigenvalues N+
will have the same distribution as the number of negative eigen-
values N− = N − N+. Hence, P(cN,N ) = P((1 − c)N,N )
(the distribution is symmetric around c = 1/2). Thus, it is
sufficient to focus only on the range 1/2 � c � 1.

The evaluation of the N -fold integral (14) in the large-N
limit consists of the following steps: First, we write the
integrand (ignoring the δ function) as exp[−βE({λi})] with
E({λi}) = −(1/2)

∑
j �=k ln |λj − λk| + (1/2)

∑
i λ

2
i . Written

in this form, the integral has a natural interpretation as the
partition function of a Coulomb gas in equilibrium at inverse
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temperature β. We can identify the λi’s as the coordinates
of the charges of a two-dimensional (2D) fluid confined
on the real axis. The charges repel each other via the 2D
logarithmic Coulomb potential and are confined by a quadratic
external potential. Then E is the energy of this Coulomb
gas. Furthermore, the Coulomb energy scales, for large N ,
as ∼O(N2) (since it involves pairwise interaction between N

charges). In contrast, the external potential energy scales as
∼λ2

typN where λtyp is a typical eigenvalue. Balancing the two
energy scales, one finds that a typical eigenvalue scales as
λtyp ∼ √

N for large N .
The next step is to evaluate this partition function of

the Coulomb gas in the large-N limit via the saddle point
method. In the large-N limit, the eigenvalues become rather
dense and one can then take a continuum limit where one
replaces the integration over the discrete eigenvalues by a
functional integral over the density of these eigenvalues.
Originally introduced by Dyson [26], this procedure (see
also [36]) has recently been successfully used in a number
of different contexts. These include the computation of the
extreme eigenvalue distribution of Gaussian [3,4] and Wishart
random matrices [4,8,9], counting the number of stationary
points of random Gaussian landscapes [10,11], and computing
the distribution of the bipartite quantum entanglement [16–18].
In addition, this method has also been used recently in
systems such as nonintersecting fluctuating interfaces in
presence of a substrate [22], in computing the distribution
of conductance and shot noise power in mesoscopic cavities

[14,15], and in the study of multiple input multiple output
channels [20].

Dyson’s prescription requires first a coarse-graining pro-
cedure, where one sums over (partial tracing) all microscopic
configurations of λi’s compatible with a fixed charge density
function �N (λ) = N−1 ∑

i δ(λ − λi). Second, one performs a
functional integral over all possible positive charge densities
�N (λ) normalized to unity. Finally the functional integral is
carried out in the large-N limit by the saddle point method.

Following this prescription, we introduce a continuum fluid
representation for the Coulomb cloud of eigenvalues with
density �N (λ) = N−1 ∑N

i=1 δ(λ − λi). Since λtyp ∼ √
N , it

follows that the normalized density should have the scaling
form �N (λ) = N−1/2fc(λ/

√
N ) for large N . The scaled

density fc(x) satisfies the obvious normalization conditions:∫ ∞

−∞
dxfc(x) = 1, (15)∫ ∞

−∞
dxθ (x)fc(x) = c, (16)

where we have set N+ = cN with 1/2 � c � 1 being the
fraction of positive eigenvalues. The probability density (14)
can then be rewritten as a functional integral over fc(x) as

P(N+ = cN,N ) = Zc(N )

ZN

, (17)

where the numerator Zc(N ) reads

Zc(N ) =
∫

D[fc(x)] exp

{
−β

2
N2

[∫ ∞

−∞
dxx2fc(x) −

∫ ∞

−∞

∫ ∞

−∞
dxdx ′fc(x)fc(x ′) ln |x − x ′|

+A1

(∫ ∞

−∞
dxθ (x)fc(x) − c

)
+ A2

(∫ ∞

−∞
dxfc(x) − 1

)]}
, (18)

where A1,A2 are Lagrange multipliers enforcing the normal-
ization conditions (15) and (16).

We define the action S[fc(x)] as

S[fc(x)] =
∫ ∞

−∞
dxx2fc(x) −

∫ ∞

−∞

∫ ∞

−∞
dxdx ′fc(x)fc(x ′)

× ln |x − x ′| + A1

(∫ ∞

−∞
dxθ (x)fc(x) − c

)

+A2

(∫ ∞

−∞
dxfc(x) − 1

)
. (19)

Evaluating (18) by the method of steepest descent and using
the large-N asymptotics of the denominator ZN in (17) gives,
to leading order for large N ,

Zc(N ) ≈ exp

(
−β

2
N2S[f �

c (x)]

)
, (20)

ZN ≈ exp(−β�0N
2), (21)

where �0 = (3 + 2 ln 2)/8 [3] and f �
c (x) is the solution of the

saddle point equation

0 = δS[fc(x)]

δfc

= x2 + A1θ (x) + A2 − 2
∫ ∞

−∞
dx ′f �

c (x ′) ln |x − x ′|. (22)

The function f �
c (x) can be interpreted as the equilibrium (or

optimal) charge density of the eigenvalue fluid, given a fixed
fraction c of positive charges. Once we obtain the solution
f �

c (x) of the integral equation (22), we can evaluate the saddle
point action in (20), and together with (21) one then gets the
index distribution

P(cN,N ) = Zc(N )

ZN

≈ exp

⎛
⎜⎝−βN2

[
1

2
S[f �

c (x)] − �0

]
︸ ︷︷ ︸

�(c)

⎞
⎟⎠,

(23)

where �(c) is the large deviation function.
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Thus all we have to do is to solve the saddle point
equation (22) for a fixed 1/2 � c � 1. To avoid the Lagrange
multipliers, it is convenient to differentiate (22) with respect
to x and for (x �= 0), one gets the integral equation

x = P
∫ ∞

−∞

f �
c (x ′)

x − x ′ dx ′ (24)

(where P denotes Cauchy’s principal value), supplemented
with the constraints ∫ ∞

−∞
dxf �

c (x) = 1, (25)∫ ∞

0
dxf �

c (x) = c. (26)

Singular integral equations of this type have been studied by
Tricomi [37], who derived an explicit formula for the solution
f �

c (x) in the case when the solution is nonzero over a single
finite connected support x ∈ [L1,L2] where L1 and L2 are
respectively the lower and the upper end of the support.
Tricomi’s theorem states that the general solution f (x) to
singular integral equations of the form

g(x) = P
∫ L2

L1

f (x ′)
x − x ′ dx ′ (27)

over the interval [L1,L2] with L1 < L2 [where the source
function g(x) is given and arbitrary] is [37]

f (x) = − 1

π2
√

(L2 − x)(x − L1)

×
[

P
∫ L2

L1

√
(L2 − x ′)(x ′ − L1)

x − x ′ g(x ′)dx ′ + B1

]
,

(28)

where B1 = −π
∫ L2

L1
f (x)dx is a constant.

Let us then first assume that indeed the solution f �
c (x) of

(24), with the source function g(x) = x, has a single support
over [L1,L2]. Substituting g(x) = x, one can evaluate the
integral in (28) explicitly to obtain

f �
c (x) = 1

8π
√

(L2 − x)(x − L1)
[(L2 − L1)2

+ 4(L2 + L1)x − 8x2 + 8], (29)

where we have used the normalization condition∫ L2

L1
f �

c (x)dx = 1 to set the constant B1 = −π . There
are two unknown constants L1,L2 which are to be fixed
from the constraint (26) and the consistency condition that
the solution f �

c (x) (which represents a density) must be
non-negative over [L1,L2]. At the two end points L1 and
L2, the solution either vanishes or has an inverse square root
divergence (which is integrable). If we try to evaluate these
constants, it is easy to check that a non-negative consistent
solution is possible only for two limiting values of c, namely,
c = 1/2 and c = 1. Let us discuss these two cases first.

The case c = 1/2. In this case, the solution must be
symmetric which indicates L1 = −L2. In addition, it is clear
physically that the solution must vanish at the end points L1

and L2. This fixes L2 = −L1 = √
2 and the solution in (29)

reduces to the Wigner semicircle law, namely,

f �
1/2(x) = 1

π

√
2 − x2. (30)

This is reassuring and is expected for the following reason:
if there was no constraint at all on the fraction of positive
eigenvalues, the system would naturally choose to have half
the eigenvalues positive and half negative on average, implying
〈N+〉 = N/2, and the equilibrium charge density would be the
standard Wigner semicircle law.

The case c = 1. In the other extreme limit c = 1 where all
the eigenvalues are forced to be positive, one can again find a
consistent solution from (29) that satisfies all the constraints
and is given by

f �
1 (x) = 1

2π

√
L − x

x
(L + 2x) , (31)

where L = 2
√

2/3. In this case, the support is over [0,L] with
L1 = 0, L2 = L. Note that this solution vanishes at the upper
edge x = L and diverges as x−1/2 at the lower edge x = 0.
This explicit solution was first obtained in [3].

It turns out that for other values of 1/2 < c < 1, there is no
single support solution (29) that satisfies the constraint (26)
and is non-negative for all x ∈ [L1,L2]. To see what is going
wrong, it was instructive to perform numerical simulation (the
details of which will be described later) for 1/2 < c < 1. For
example, for c = 0.6, the optimal density is given in Fig. 1. It
is evident from the figure that for c = 0.6, indeed there are two
disconnected supports of the optimal charge density f �

c (x).
A similar feature actually holds for all 1/2 < c < 1. As

c → 1 from below, the area under the left support vanishes
and we are left with a single support over [0,L] as in (31).
On the other hand, as c decreases continuously, the area under
the left support grows and the upper edge of the left support
(always on the negative side) also increases. Finally when c hits
1/2, the two supports merge into a single support, symmetric
about the origin, and reduces to the Wigner semicircle law (see
Fig. 2).

Hence, it is not surprising that we cannot obtain any
consistent single support solution using Tricomi’s result in (29)
for 1/2 < c < 1, as the optimal density does not have a single
support but rather two disconnected supports. The techni-
cal reason for the two-support solution can indeed be traced
back to the jump discontinuity at x = 0 due to the Heaviside
θ function in the saddle point equation (22). So, the main
technical challenge is how to obtain analytically an explicit
two-support solution of the integral equation (24) for all
1/2 < c < 1, given that we cannot use the Tricomi solution
any more. This is an interesting mathematical challenge since
such two-support solutions appear in other problems as well
and a general method would be very useful. This is what we
achieve here as detailed in the next two subsections. In fact
we will present two different approaches producing the same
results. But before we get into the technical details of the
two methods, it may be useful to summarize here the main
result.
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FIG. 1. (Color online) Analytical density f �
c (x) in (32) for c = 0.6 (solid black) together with results from (i) (red circles) numerical

diagonalization of 106 matrices of size 20 × 20, where only samples having 12 positive eigenvalues were retained for the statistics (c = 0.6),
and (ii) (blue triangles) Monte Carlo simulations of the Coulomb fluid with N = 50 particles.

We show that the solution of (24) satisfying the constraints
(25) and (26) and the condition of non-negativity, for all 1/2 �
c � 1, is given by

f �
c (x) = 1

π

√
L(a) − x

ax

√
[ax + L(a)][x + (1 − 1/a)L(a)],

(32)

where

L(a) = a
√

2√
a2 − a + 1

(33)

and the parameter a is determined implicitly as a function of
c from (26) by the condition

∫ 1

0
dy

√
1 − y

y

√
y2 + y + a − 1

a2
= π

2

(
1 − a − 1

a2

)
c.

(34)

2 1 0 1 2
0.0

0.2

0.4

0.6

0.8

1.0

1.2

x

f c
x

FIG. 2. (Color online) The optimal density of eigenvalues f �
c (x)

[Eq. (32)] for c = 1/2 (short-dashed red), 3/4 (long-dashed green),
and 0.995 (solid blue).

For general c, the equilibrium density (32) has support on the
union of two disconnected intervals,

[−L(a)/a,−(1 − 1/a)L(a)] ∪ [0,L(a)]. (35)

One can easily check that in the two limiting cases c = 1/2
and c = 1, our general solution reduces, respectively, to (30)
and (31):

(a) c = 1. This corresponds to having no negative eigenval-
ues at all; thus the equilibrium density must match the solution
in [3] at z = 0. This is achieved as long as a → 2 and thus
L(a) → √

8/3 as expected (compare to [3]). Then the blob of
negative eigenvalues in (32) [see (35)] collapses to a single
point and vanishes.

(b) c = 1/2. This case represents the usual Wigner semicir-
cle and is recovered from (32) when a → 1 and consequently
L(a) → √

2. In this case, the support (35) becomes compact
[−√

2,
√

2] as it should.
In the next two subsections, we provide two alternative

derivations of (32), the first one based on a scalar Riemann-
Hilbert ansatz and the second one based on an iterated
application of Tricomi’s single support solution.

B. Method I: Proof of (32) via Riemann-Hilbert ansatz

In the context of counting of planar diagrams, Brezin et al.
[38] encountered singular integral equation of the type (27)
with a single support solution. They did not use the explicit
Tricomi solution, but instead developed an alternative method
using a scalar Riemann-Hilbert ansatz. This method makes use
of properties of analytic functions in the complex plane. Even
though the method requires making a guess or ansatz (verified
a posteriori), it turns out to be rather useful. This method can
be generalized in a straightforward manner to the case when
the solution has multiple disconnected supports and has been
used before in other contexts [an example in a specific case
can be found in the Appendix of [15]; see also [39]]. Let us
illustrate below the main idea behind this method.
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Let us consider the singular integral equation

g(x) = P
∫

S

dx ′ f (x ′)
x − x ′ , (36)

where the solution f (x) has support on the union of a finite
number of intervals S = ⋃M

k=1[αk,βk] on the real line and
is normalized to unity:

∫ ∞
−∞ f (x)dx = 1. The next step is to

define a complex function F (z) (without the principal part)

F (z) =
∫ ∞

−∞
dx ′ f (x ′)

z − x ′ (37)

in the complex plane. The function F (z) has the following
properties:

(1) It is analytic everywhere in the complex z plane outside
the cuts S = ⋃M

k=1[αk,βk] on the real line.
(2) It behaves as 1/z when |z| → ∞ since

∫
f (x ′)dx ′ = 1

due to the normalization.
(3) It is real for z real outside the cuts S = ⋃M

k=1[αk,βk].
(4) As one approaches any point x on the cuts S =⋃M

k=1[αk,βk] on the real axis, F (x ± iε)
ε→0= g(x) ∓ iπf (x).

This is a consequence of (36). Thus, f (x) = − 1
π

Im[F (x +
iε)].

The general theory of analytic functions in the complex
plane tells us that there is a unique function F (z) which satisfies
all the four properties mentioned above. Thus, if one can make
a good guess or ansatz for the function F (z) and verifies that
it satisfies all the above properties, then this F (z) is unique.
Knowing F (z), one can then read off the solution f (x) using
the fourth property mentioned above.

In our case, g(x) = x, f (x) = f �
c (x) and from the simula-

tion results we already know that there are only two supports
for 1/2 < c < 1, one on the positive side and one on the
negative side. To make a good guess for F (z), let us reexamine
the precise form of the solution in the two limiting cases
c = 1/2 and c = 1:

f �
1/2(x) ∝

√
2 − x2, Wigner’s semicircle, (38)

f �
1 (x) ∝

√
L2 − x

x
(2x + L2) , DM [3], (39)

with L2 = √
8/3. For intermediate values of c, we then seek a

sensible two-support ansatz that interpolates between (38) and
(39). A suitable ansatz, that is verified a posteriori, is

f �
c (x) = 1

π
√

a

√
L − x

x

√
(ax + L)(x + bL), (40)

which has support over x ∈ [−L/a,−bL] ∪ [0,L]. The un-
known parameters a,b,L depend on c in such a way that
for c → 1/2, a → 1,b → 0,L → √

2 and for c → 1, a →
2,b → 1/2,L → √

8/3. We can then make the following
guess for the function F (z), valid everywhere in the complex
plane z, except on the cuts x ∈ [−L/a,−bL] ∪ [0,L] on the
real axis:

F (z) = z −
√

z − L

z

√
(z + L/a)(z + bL). (41)

It is easy to check that the definition (41) indeed satisfies
all the four properties mentioned above and hence is unique.
From the fourth property mentioned above, namely, taking the

limit z → x + iε with x ∈ [−L/a,−bL] ∪ [0,L], it follows
that that f �

c (x) is indeed given by (40).
To fix the parameters a, b, and L, we will use the second

property of F (z) mentioned above, namely, that as |z| → ∞,
F (z) � 1/z. Expanding F (z) in (41) for large z we get

F (z) = z − z

(
1 − L

z

)1/2 (
1 + L

az

)1/2 (
1 + bL

z

)1/2

= z − z

[
1 + L

2

(
1

a
− 1 + b

)
1

z
− D(a,b,L)

z2
+ O(z−3)

]
,

(42)

where

D(a,b,L) = L2

8a2
{1 + a[2 − 2b + a(1 + b)2]}. (43)

Imposing the exact asymptotic decay F (z) � 1/z for large |z|,
we immediately get the two conditions

1

a
− 1 + b = 0, (44)

D(a,b,L) = 1, (45)

which lead to

b = 1 − 1

a
, (46)

L ≡ L(a) = a
√

2√
a2 − a + 1

, (47)

as stated in (32). Thus, we are left with only one unknown
parameter a. This is fixed from the normalization condition∫ L(a)

0 f �
c (x)dx = c, leading to (34) which determines a im-

plicitly as a function c.

C. Method II: Proof of (32) via double iteration
of the Tricomi solution

While the method I presented in the previous subsection
for finding the solution with two disconnected supports of the
integral equation (36) with g(x) = x is rather elegant, it has
the drawback that one has to make a judicious guess for the
function F (z). It is thus desirable to find a method where one
does not need to guess. We show in this subsection that indeed
it is possible to obtain an explicit two-support solution to (36)
without making an a priori guess. The main idea behind this
method II is to actually use the Tricomi single-support solution
twice. Let us first outline below the basic principle behind this
idea which turns out to be rather general and works for arbitrary
source function g(x) in (36).

We consider again the integral equation

g(x) = P
∫

S

dx ′ f
�
c (x ′)

x − x ′ , (48)

where f �
c (x) is assumed to have nonzero solution over two

connected components S = [l1,l2] ∪ [L1,L2], with l1 � l2 �
0 � L1 � L2. Note that Eq. (48) holds for x ∈ [l1,l2] and also
for x ∈ [L1,L2]. Let us write the solution f �

c (x) as

f �
c (x) =

{
f 1

c (x) for x ∈ [l1,l2],

f 2
c (x) for x ∈ [L1,L2].

(49)
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Then (48) can be divided into two parts (respectively for the
left and the right supports) and rewritten as

g(x) =
∫ l2

l1

dx ′ f
1
c (x ′)

x − x ′ + P
∫ L2

L1

dx ′ f
2
c (x ′)

x − x ′
(50)

for x ∈ [L1,L2],

g(x) = P
∫ l2

l1

dx ′ f
1
c (x ′)

x − x ′ +
∫ L2

L1

dx ′ f
2
c (x ′)

x − x ′
(51)

for x ∈ [l1,l2].

Note that for x ∈ [L1,L2], the integral over [l1,l2] becomes an
ordinary integral (as there is no pole and we can drop the P)
and similarly for the other side.

The main idea then is to eliminate say f 2
c (x) from these two

equations and obtain a single integral equation for f 1
c (x). This

is carried out in the following way. For x ∈ [L1,L2], (50) can
be rewritten as

g̃(x) = g(x) −
∫ l2

l1

dx ′ f
1
c (x ′)

x − x ′ = P
∫ L2

L1

dx ′ f
2
c (x ′)

x − x ′ . (52)

The solution f 2
c (x) has a single support over [L1,L2]. Hence

we can now use the explicit Tricomi solution (28) [replacing
g(x) in (28) by the new effective source function g̃(x)] to
express f 2

c (x) (for x ∈ [L1,L2]) as a functional of f 1
c (y) where

y ∈ [l1,l2]. Next, we use this explicit solution for f 2
c (x) in

the second equation (51) and thus obtain a single integral
equation involving f 1

c (x). It turns out that for arbitrary g(x),
this integral equation for f 1

c (x) can be recast, with a suitable
multiplicative factor, in the same form as (27) and since f 1

c (x)

has only a single support over [l1,l2], one can again use the
Tricomi solution (28) to explicitly obtain f 1

c (x). This is the
general program. Below we show how the steps actually work
out. Even though the method is quite general and works for
arbitrary g(x), let us focus below on our specific case g(x) = x

just for simplicity.
Our basic saddle point equation reads

x = P
∫

S

dx ′ f
�
c (x ′)

x − x ′ , (53)

where the density f �
c (x) must also satisfy the two constraints

(25) and (26):∫ ∞

−∞
dxf �

c (x) = 1 and
∫ ∞

0
dxf �

c (x) = c. (54)

The solution f �
c (x) is expected to have support over two

disconnected components S = [l1,l2] ∪ [L1,L2], with l1 �
l2 � 0 � L1 � L2. For consistency, we expect f �

c (l1) = 0 =
f �

c (L2). We also expect f �
c (L1) = 0 if L1 > 0 [or otherwise

L1 = 0 with no constraint on f �
c (L1)], and similarly f �

c (l2) = 0
if l2 < 0. We divide f �

c (x) into two parts as in (49). The
constraints thus become∫ l2

l1

dxf 1
c (x) +

∫ L2

L1

dxf 2
c (x) = 1 and

∫ L2

L1

dxf 2
c (x) = c.

(55)

We then apply Tricomi’s theorem (28) to (52) with
g(x) = x to determine f 2

c (y) on the interval y ∈ [L1,L2]
and obtain

f 2
c (y) = 1

π2
√

y − L1
√

L2 − y

[
πc + P

∫ L2

L1

du

√
u − L1

√
L2 − u

u − y

(
u +

∫ l2

l1

dt
f 1

c (t)

t − u

)]

= 1

π
√

y − L1
√

L2 − y

[
1 + (L2 − L1)2 + 4(L1 + L2)y − 8y2

8
+

∫ l2

l1

dtf 1
c (t)

√
L1 − t

√
L2 − t

t − y

]
, (56)

where we have used the following result:

P
∫ L2

L1

du

√
u− L1

√
L2 − u

(u− y)(t − u)
= π

(
1 +

√
L1 − t

√
L2 − t

t − y

)
(57)

and ∫
dxf 1

c (x) = 1 −
∫

dxf 2
c (x) = 1 − c. (58)

As explained above, we expect f �
c (L2) = 0. Thus

1 + L2
1 + 2L1L2 − 3L2

2

8
+

∫ l2

l1

dtf 1
c (t)

√
L1 − t

√
L2 − t

t − L2
= 0.

(59)

Multiplying f 2
c (y) by π

√
(y − L1)(L2 − y) in (56) and sub-

tracting (59) from it gives a rather compact expression:

f 2
c (y) = 1

π

√
L2 − y

y − L1

[
L2 − L1

2
+ y +

∫ l2

l1

dt
f 1

c (t)

t − y

√
L1 − t

L2 − t

]
for y ∈ [L1,L2]. (60)

Next we substitute this expression of f 2
c (x) in the saddle

point equation (51) valid over the left support [l1,l2] [with
g(x) = x]. The resulting integrals can be carried out explicitly.
We need to use the integral

1

π

∫ L2

L1

dy

x − y

√
L2 − y

y − L1
= 1 −

√
L2 − x

L1 − x
, (61)

valid for x < L1 < L2. After a few steps of algebra we get

x − P
∫ l2

l1

dt
f 1

c (t)

x − t
=

∫ L2

L1

dy
f 2

c (y)

x − y

= x − L1 + L2

2

√
L2 − x

L1 − x
+

√
L1 − x

√
L2 − x

− P
∫ l2

l1

dt
f 1

c (t)

x − t
− P

∫ l2

l1

dt
f 1

c (t)

t − x

√
L1 − t

L2 − t

√
L2 − x

L1 − x
.

(62)
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Cancellations of terms from both sides then lead us to the
following integral equation for f 1

c (x) for x ∈ [l1,l2]:

P
∫ l2

l1

dt
f 1

c (t)

t − x

√
L1 − t

L2 − t
= L1 − L2

2
− x. (63)

Defining f̃ 1
c (x) ≡ f 1

c (x)
√

L1−x
L2−x

, we get an integral equation

over [l1,l2]:

P
∫ l2

l1

dt
f̃ 1

c (t)

t − x
= L1 − L2

2
− x, (64)

which, fortunately, has the same form as the original single-
support saddle point equation (27) with the source function
g(x) = (L1 − L2)/2 − x. This can be inverted explicitly using
(28). Enforcing the constraint f 1

c (l1) = 0, we get∫ l2

l1

f̃ 1
c (x)dx + (L2 − L1)(l2 − l1)

4
+ l2

2 − 3l2
1 + 2l1l2

8
= 0.

(65)

Using this in the Tricomi formula (28) finally gives us a rather
explicit solution

f 1
c (x) = 1

π

√
x − l1

l2 − x

√
L2 − x

L1 − x

[
L1 − L2

2
+ l2 − l1

2
− x

]
for l1 � x < l2. (66)

We can now replace f 1
c (x) in the expression of f 2

c (x) given in
Eq. (60). Finally we get the expression of the density f �

c (x)
(f �

c (x) = f 1
c (x) on [l1,l2] and f �

c (x) = f 2
c (x) on [L1,L2]):

f �
c (x) = 1

π

√(
x − l1

l2 − x

)(
L2 − x

L1 − x

)∣∣∣∣L1 − L2

2
+ l2 − l1

2
− x

∣∣∣∣
for x ∈ [l1,l2] ∪ [L1,L2]. (67)

So far we have used two physical conditions f 1
c (l1) = 0

and f 2
c (L2) = 0 which are evidently manifest in the explicit

solution (67). Substituting in (59) the expression of f �
c (x) from

Eq. (67), we get an identity for the edge points of the support:

1 + L2
1 + 2L1L2 − 3L2

2

8

+
(

l2 − l1

8

)
(3l1 + l2 + 2L2 − 2L1) = 0. (68)

In addition, we have one more condition
∫ L2

L1
f 2

c (x)dx = c.
Thus we have four unknowns l1, l2, L1, and L2 and two
conditions mentioned above. To determine all the constants,
we need to impose some additional conditions at the other
two edges x = l2 and x = L1. With these conditions imposed,
one obtains a unique solution for a given value of c as
demonstrated below.

It is clear we must have either L1 = 0, or L1 > 0 [but with
f �

c (L1) = 0]. Similarly, we must also have either l2 = 0, or
l2 < 0 [with f �

c (l2) = 0].
(a) First case: l2 = 0 = L1. Equation (68) gives 8 = 3L2

2 +
3l2

1 + 2l1L2. Thus,

f �
c (x) = 1

π

√
(x − l1)(L2 − x)

∣∣ l1+L2
2 + x

∣∣
|x|

for x ∈ [l1,0[∪]0,L2].

The last constraint
∫ L2

0 f �
c (x)dx = c implies that f �

c (x) is
integrable in zero, thus l1 + L2 = 0. Finally, using Eq. (68)
we get L2 = −l1 = √

2 and

f �
c (x) = 1

π

√
2 − x2 for x ∈ [−

√
2,

√
2], (69)

and we recover the Wigner semicircle law, having a single

support [−√
2,

√
2]. Note that in this case c = ∫ √

2
0 dxf �

c (x) =
1
2 already is fixed. Thus, this solution is valid only for c = 1/2.

(b) Second case: l2 < 0 with f �
c (l2) = 0 and L1 = 0. In this

case, the density has a support over [l1,l2] ∪ [0,L2]. We get

f �
c (x) = 1

π

√
(x − l1)(x − l2)(L2 − x)

x

for x ∈ [l1,l2] ∪ [0,L2] (70)

with L2 = −(l1 + l2) [because f �
c (l2) = 0] and 1 + −3L2

2
8 +

( l2−l1
8 )(3l1 + l2 + 2L2) = 0 [Eq. (68)]. Let us define a =

−L2/l1. We readily obtain the claimed solution (32):

L2 = L(a) = a
√

2√
a2 − a + 1

and l1 = −L2

a

and l2 = −L2

(
1 − 1

a

)
. (71)

As l2 � 0 and l1 � l2, we have 1 � a � 2. Because of the last
constraint

∫ L2

0 f �
c (x)dx = c, the parameter a must also satisfy

the following equation:

∫ 1

0
dy

√
1 − y

y

√
y2 + y + a − 1

a2
= π

2

(
1 − a − 1

a2

)
c

(72)

in complete agreement with (34).
(c) Third case: L1 > 0 with f �

c (L1) = 0 and l2 = 0. This
is the exact symmetric of the second case. It corresponds to
c < 1/2.

(d) Fourth case: l2 < 0 with f �
c (l2) = 0 and L1 > 0 with

f �
c (L1) = 0. The constraints f �

c (l2) = 0 and f �
c (L1) = 0 give

respectively L2 − L1 = −(l1 + l2) and L1 + L2 = l2 − l1.
Thus L2 = −l1 and L1 = l2. As l2 < 0 < L1, this case is
impossible.

In conclusion, there is only one unique solution (case 2
above) which is valid for all 1/2 � c � 1 and in the limiting
case c = 1/2 this solution coincides with the first case above
that is valid only for c = 1/2.

D. Evaluation of the action and derivation of �(c)

Having computed explicitly the saddle point solution f �
c (x)

in Eqs. (32)–(34), the next step is to evaluate the saddle point
action S[f �

c (x)] where the action S[fc(x)] is given in (19).
This will then provide the expression for the large deviation
function �(c) associated with the index distribution in (23):

�(c) = 1

2
S[f �

c (x)] − [3 + 2 ln(2)]

8
. (73)
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Upon substituting the saddle point solution f �
c (x) in the

action (19), one gets

S[f �
c (x)] =

∫ ∞

−∞
x2f �

c (x) dx −
∫ ∞

−∞

∫ ∞

−∞
f �

c (x)

× f �
c (x ′) ln |x − x ′|dx dx ′. (74)

By construction, the saddle point solution f �
c (x) automatically

satisfies the two constraints and hence the terms involving the
two Lagrange multipliers drop out in (19). One can directly
substitute the explicit expression of f �

c (x) from (32) to evaluate
the double integral in (74). However, this is a bit cumbersome.
It turns out to be convenient to use a slightly different trick.
Note that f �

c (x) satisfies the saddle point equation

x2 + A1θ (x) + A2 = 2
∫ ∞

−∞
f �

c (x ′) ln |x − x ′| dx ′. (75)

The important point is that this equation is valid for all x where
the solution f �

c (x) is nonzero, i.e., for all x ∈ [l1,l2] ∪ [0,L(a)]
where l1 = −L(a)/a, l2 = −(1 − 1/a)L(a) and L(a) is given
in (33).

To evaluate the action, we multiply (75) by f �
c (x) and

integrate over all x. Using the two normalization conditions
(i)

∫ ∞
−∞ f �

c (x)dx = 1 and (ii)
∫ ∞

0 f �
c (x)dx = c, we get∫ ∞

−∞

∫ ∞

−∞
f �

c (x)f �
c (x ′) ln |x − x ′|dx dx ′

= 1

2

[∫ ∞

−∞
x2f �

c (x)dx + A1c + A2

]
. (76)

Substituting this result in the action (74) gives

S[f �
c (x)] = 1

2

[∫ ∞

−∞
x2f �

c (x)dx − A1c − A2

]
. (77)

Denoting μ2 = ∫ ∞
−∞ x2f �

c (x)dx we get from (73)

�(c) = − 1
4 [(3/2 − μ2) + ln(2) + A1c + A2]. (78)

It then remains to evaluate μ2 and the Lagrange multipliers A1

and A2.
To determine the Lagrange multipliers we proceed as

follows. Let us recall the function F (z) defined in (37) for
all z in the complex plane except on the real cuts x ∈
[−L(a)/a,−(1 − 1/a)L(a)] ∪ [0,L(a)]. Setting z = x real,
but outside these two cuts, and L ≡ L(a) we can make a
large-x expansion

F (x) =
∫

f �
c (x ′)

x − x ′ dx ′ =
∞∑

n=0

μn

xn+1
, (79)

where μn = ∫
f �

c (x)xndx is the nth moment. From the explicit
solution of f �

c (x) in Eq. (32) one can check that μ0 = 1 and
also μ2 = 1/2 (independent of c).

In addition, for real x > L, we have from Eq. (41)

F (x) = x −
√

(x − L)

x

(
x + L

a

)[
x +

(
1 − 1

a

)
L

]
, (80)

On the other hand for x < −L/a (on the real line to the left of
the edge −L/a of the left support), the function F (x) has the
form

F (x) = x +
√

(x − L)

x

(
x + L

a

)[
x +

(
1 − 1

a

)
L

]
, (81)

where the square root is always chosen to be positive. Note
that with this choice in (81), F (x) ≈ 1/x for large negative x.

To determine A1 and A2, we need to choose a value of x in
(75) such that it belongs to either of the two supports. Choosing
x = L and x = −L/a gives the following two equations:

L2 + A1 + A2 = 2
∫

f �
c (x ′) ln(L − x ′) dx ′, (82)

L2/a2 + A2 = 2
∫

f �
c (x ′) ln(x ′ + L/a) dx ′, (83)

where the integral runs only over the supports. Writing
ln(L − x ′) = ln(L) + ln(1 − x ′/L), expanding the logarithm
in a series, and using the definition of μn, we get from (82)

L2 + A1 + A2 = 2 ln(L) − 2
∞∑

n=1

μn

nLn
. (84)

Similarly, in Eq. (83) we write ln(x ′ + L/a) = ln(L/a) +
ln(1 + ax ′/L) and expand the logarithm in a series to get

L2/a2 + A2 = 2 ln(L/a) − 2
∞∑

n=1

(−a)nμn

nLn
. (85)

We can then determine A1 and A2 in terms of μn by solving
the two linear equations (84) and (85). It is actually convenient
to express the series involving μn in terms of the following
integrals. Using Eq. (79) and using μ0 = 1 we get

F (x) − 1

x
=

∞∑
n=1

μn

xn+1
. (86)

Let us first consider the regime x � L. Here, let us define

W1(x) = F (x) − 1

x

= x − 1

x
−

√
(x − L)

x

(
x + L

a

)[
x +

(
1 − 1

a

)
L

]
,

(87)

where we have used the definition of F (x) in Eq. (80).
Integrating Eq. (86) over [L,∞] gives∫ ∞

L

W1(x) dx =
∞∑

n=1

μn

nLn
. (88)

Next we consider the regime x � −L/a. Here we use
the definition of F (x) in Eq. (81). Integrating Eq. (86) over
[−∞,−L/a] gives∫ −L/a

−∞

[
F (x) − 1

x

]
dx = −

∞∑
n=1

(−a)nμn

nLn
. (89)
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FIG. 3. (Color online) The large deviation function �(c) in (92).

It is convenient to make a change of variable x → −x on the
left hand side (LHS) of Eq. (89). Using the definition of F (x)
in Eq. (81) this finally gives∫ ∞

L/a

W2(x) dx =
∞∑

n=1

(−a)nμn

nLn
, (90)

where W2(x) is given by

W2(x) = x − 1

x
−

√
(x + L)

x

(
x − L

a

)[
x −

(
1 − 1

a

)
L

]
.

(91)

Next we insert the expressions of the two sums from Eqs. (88)
and (90) in the two linear equations (84) and (85), solve for A1

and A2, and then substitute them in Eq. (78). This then yields
the main result

�(c) = 1

4
[L2 − 1 − ln(2L2)] + (1 − c)

2
ln(a)

− (1 − c)(a2 − 1)

4a2
L2 + c

2

∫ ∞

L

W1(x) dx

+ (1 − c)

2

∫ ∞

L/a

W2(x) dx, (92)

where W1(x) and W2(x) are defined respectively in Eqs. (87)
and (91). Unfortunately the two integrals are difficult to
compute analytically. However, they can be easily evaluated
by MATHEMATICA. A plot of this function is provided in Fig. 3.
This final form turns out to be the most convenient one for
carrying out the asymptotic expansion near c = 1/2 in the
next subsection.

E. Asymptotic expansion of �(c) near c = 1/2

We now expand �(c) in Eq. (92) for c close to 1/2. We
set c = 1/2 + δ with δ � 0 being small. Let us also define the
parameter ε by

(a − 1)

a2
= ε. (93)

When c → 1/2, a → 1 from Eq. (34), hence ε is a small
parameter for c close to 1/2. It follows from Eq. (93) that

a = 1 − √
1 − 4ε

2ε
. (94)

where we have chosen the root that gives a → 1 as ε → 0. It
also follows from Eq. (33) that

L2 = 2

1 − ε
. (95)

Let us first establish a relation between δ and ε when both
are small. Equation (34), in terms of ε and δ, can be recast as

J (ε) =
∫ 1

0
dy

√
1 − y

y

√
y2 + y + ε = π

2
(1 − ε)(1/2 + δ).

(96)

Let us first analyze the integral on the LHS of Eq. (96). To
find its asymptotic behavior for small ε, we first note that
J (0) = π/4. Next, taking a derivative with respect to ε gives

J ′(ε) = 1

2

∫ 1

0
dy

√
1 − y

y

1√
y2 + y + ε

. (97)

Make a change of variable y = εz in the integral and take the
limit ε → 0. To leading order in small ε one easily finds

J ′(ε) = − 1
2 ln(ε). (98)

Integrating and using J (0) = π/4, one then finds for small ε

J (ε) = π

4
− 1

2
ε ln(ε) + · · · . (99)

Comparing the left and the right hand sides of Eq. (96) then
gives, to leading order in small ε,

δ = − 1

π
ε ln(ε). (100)

Inverting Eq. (100), one can express ε as a function of δ and
to leading order for small δ one gets

ε = πδ

− ln(δ)
. (101)

We are ready to expand �(c) in Eq. (92) for small δ (or
equivalently for small ε). There are five terms on the right
hand side of Eq. (92). We expand each of them separately.

The first term gives, upon using Eq. (95),

T1 = 1
4 [L2 − 1 − ln(2L2)]

= 1
4 [1 − ln(4)] + 1

4ε + 3
8ε2 + O(ε3). (102)

The second term, upon using c = 1/2 + δ and a from Eq. (94)
and expanding for small ε, gives

T2 = 1 − c

2
ln(a) = 1

4
ε − 1

2
εδ + O(ε2). (103)

The third term gives

T3 = − (1 − c)

4
(1 − 1/a2)L2 = −1

2
ε + εδ + O(ε2). (104)

The fourth term gives

T4 = c

2

∫ ∞

L

dx

×
{
x − 1

x
−

√
(x − L)

x

(
x + L

a

)[
x +

(
1 − 1

a

)
L

]}

= 1

8
[−1 + ln(4)] + π − 1

8
ε + [−1 + ln(4)]

4
δ

+ π − 1

4
εδ + O(ε2). (105)
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Similarly, the fifth term gives

T5 = (1 − c)

2

∫ ∞

L/a

dx

×
{
x − 1

x
−

√
(x + L)

x

(
x − L

a

)[
x −

(
1 − 1

a

)
L

]}

= 1

8
[−1 + ln(4)] − π − 1

8
ε − [−1 + ln(4)]

4
δ

+ π − 1

4
εδ + O(ε2). (106)

Adding the five terms one gets, to leading order,

�(c = 1/2 + δ) = T1 + T2 + T3 + T4 + T5 = π

2
εδ + O(ε2).

(107)

Use of the expression of ε as a function of δ from Eq. (101)
then gives our leading order result for small δ:

�(c = 1/2 + δ) � −π2

2

δ2

ln δ
. (108)

Substituting this result in Eq. (23) we then get, for c = 1/2 + δ

with δ small (note that by symmetry one can similarly obtain
the form of the function for δ < 0 also),

P((1/2 + δ)N,N ) ≈ exp

[
−βπ2N2 δ2

−2 ln(|δ|)
]

. (109)

Resetting δ = (N+ − N/2)/N and assuming (N+ − N/2) �
N , one gets the Gaussian distribution in the large-N limit

P(N+,N ) ≈ exp

[
− βπ2

2 ln(N )
(N+ − N/2)2

]
, (110)

from which one can read off the variance for large N and for
all β,

�(N ) =
〈(

N+ − N

2

)2〉
� 1

βπ2
ln(N ) + O(1). (111)

This result is in agreement with that of Cavagna et al. [31] for
β = 1.

III. NUMERICAL SIMULATIONS

In this section, we explain how to compute numerically
the index distribution for a Gaussian random matrix ensemble
and to compare the results with analytical predictions. The
joint distribution of the N eigenvalues of an N × N Gaussian
random matrix with Dyson index β is given in Eq. (12) by

P(λ1, . . . ,λN ) = 1

ZN

exp

(
−β

2

N∑
i=1

λ2
i

)∏
j<k

|λj − λk|β

= 1

ZN

e−βE[{λi }] (112)

with E[{λi}] = 1
2

∑
i λ

2
i − ∑

i<j ln |λi − λj |. The idea is to
sample the distribution in Eq. (112) using a Metropolis

Monte Carlo algorithm and to construct a histogram of the
number of positive eigenvalues N+ = ∑N

i=1 θ (λi). For large
N , we expect the distribution of N+ to be of the form [see
Eq. (9)]

P(N+ = cN,N ) ∼ exp[−βN2�(c)]. (113)

Therefore we want to construct a histogram of the rate function
�num(c) ≡ − ln P(N+=cN,N)

βN2 and compare with its analytical
expression �(c) for large N given in Eq. (92).

As N+ is a discrete function of the N eigenvalues, it takes
integer values between 0 and N . Numerically it is easier to
consider continuous functions and to come back to N+ only
at the end. Therefore we introduce a smoothed version of the
Heaviside theta function θ (λ) and thus of N+. Let us define
for η > 0:

θη(λ) = 1

1 + e
− λ

η

and Nη =
N∑

i=1

θη(λi). (114)

The function θη increases from 0 (in the limit λ → −∞) to 1
(in the limit λ → ∞). It has the same symmetry with respect to
the origin as the Heaviside theta function: θη(−λ) = 1 − θη(λ).
Thus we have P(Nη = cN,N ) = P(Nη = (1 − c)N,N ). The
parameter η gives the width of the jump from 0 to 1 and
limη→0 θη(λ) = θ (λ); thus N0 = N+.

A. Distribution of Nη: Nonstandard Metropolis algorithm

In this section, we explain the Metropolis algorithm and
a modified version that allows us to reconstruct numerically
the full distribution of Nη for a fixed and large enough value
of η.

1. Standard Metropolis algorithm

We start with an initial configuration of the λi’s (real
numbers of order

√
N ). At each step, a small move {λi} −→

{λ′
i} is proposed in the configuration space. In our algorithm, it

consists of picking at random an eigenvalue λj and proposing
to modify it as λj −→ λj + ε, where ε is a real number
drawn from a Gaussian distribution with mean zero and with
a variance that is set to achieve the standard average rejection
rate 1/2.

The move is accepted with probability

p = min

(
P(λ′

1, . . . ,λ
′
N )

P(λ1, . . . ,λN )
,1

)
= min(e−β(E[{λ′

i }]−E[{λi }]),1)

(115)

and rejected with probability 1 − p. This dynamics enforces
the detailed balance and ensures that at long times the algo-
rithm reaches thermal equilibrium (at inverse “temperature” β)
with the correct Boltzmann weight e−βE[{λi }].

At long times, the Metropolis algorithm thus generates
samples of {λi} drawn from the joint distribution in Eq. (112).
We can start to keep the value of Nη = ∑N

i=1 θη(λi) for
the configurations of eigenvalues generated by the algo-
rithm (say every ten steps) and construct a histogram
for Nη.

However, the distribution of Nη is expected to be of the form
P(Nη = cηN,N ) ∼ exp[−βN2�η(cη)] for large N exactly as
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for N+, and thus to be highly peaked around its average.
The events in the tails of the distribution are extremely rare.
Therefore we cannot, with a standard Metropolis algorithm,
explore in a “reasonable” time a wide range of values of
Nη. We propose below a modified version of the algorithm
that allows us to explore the far left and right tails of the
distribution.

2. Modified algorithm: Conditional probabilities

We want to explore regions that are far from the mean value
of Nη, i.e., far from 〈Nη〉 = N/2 (by symmetry), for example
the far right tail Nη = Ncη with cη > 1/2.

The idea is thus to force the algorithm to explore the
region cη � c∗ for different values of c∗. We thus add in
the algorithm the constraint cη � c∗. More precisely, we start
with an initial configuration that satisfies Nη = cηN � Nc∗.
At each step, the move is rejected if Nη < Nc∗. If Nη � Nc∗,
then the move is accepted or rejected exactly with the same
condition as before [see Eq. (115)]. Because of the new
constraint cη � c∗, the moves are rejected more often than
before. Therefore the variance of the Gaussian distribution
P (ε) has to be taken smaller to achieve the standard rejection
rate 1/2.

We run the program for several values of c∗ and we
construct a histogram of Nη for each value c∗. This gives the
conditional probability distribution P (Nη|Nη � Nc∗). Again,
the algorithm can only explore a very small range of values of
Nη. The difference from the previous algorithm is that we can
now explore small regions of the form Nc∗ � Nη � Nc∗ + δ

for every c∗, whereas we could before only explore the
neighborhood of the mean value N/2.

The distribution of Nη is given by

P(Nη) = P(Nη|Nη � Nc∗)P(Nη � Nc∗)

(for every Nη � Nc∗). (116)

Therefore the rate function reads

�η(cη) ≡ − ln P(Nη = cη N )

βN2

= − ln P(Nη = cηN |Nη � Nc∗)

βN2
+ Kc∗

for cη > c∗, (117)

where Kc∗ = − ln P(Nη�Nc∗)
βN2 is a constant (independent of cη).

In order to get rid of the constant Kc∗ , we construct from the
histogram giving P (Nη|Nη � Nc∗) the derivative of the rate
function. This derivative is equal to d�η(cη)

dcη
. The constant Kc∗

disappears.
We can come back to �η(cη) [and thus P (Nη = cηN ) =

e−βN2�η(cη)] from its derivative using an interpolation of the
data for the derivative and a numerical integration of the
interpolation.

We typically run the algorithm for N = 50 and 108

iterations.

B. Back to N+

Using the algorithm explained in the previous subsection,
we get the distribution of Nη for a given value of η. A natural

Φ(c) , Φnum(c)

c0.2 0.4 0.6 0.8

0.00

0.05

0.10

0.15

FIG. 4. (Color online) Rate function �num(c) = − ln P(N+ =
cN,N )/(βN2) plotted as a function of c for N = 50. The red points
are numerical data obtained with the method explained in Sec. III with
η = 0.5. Each point corresponds to an integer value of N+ = cN . The
blue solid line is the analytical prediction �(c) given in Eq. (92) for
the large-N limit.

way of recovering the distribution of N+ would be to run
the algorithm for smaller and smaller values of η as N+ =
limη→0 Nη. However, as explained above this is not an efficient
method numerically. For small η, the distribution of Nη is
indeed not smooth; N+ = N0 even takes integer values, i.e., it
is discontinuous.

A better procedure consists in running the algorithm for
a fixed (and not too small) value of η, typically η = 0.5 for
N = 50, and exploiting the joint data that we can get for Nη

and N+. When running the algorithm, we can indeed construct
a joint histogram for N+ and Nη (by keeping the value of N+
and Nη every ten steps). With all the data for many values of
the constraint c∗ and after having filled up the histogram by
symmetry around 1/2, we can then get a full histogram for
P(N+|Nη).

Finally we recover the distribution of N+ by numerical
integration over Nη:

P(N+) =
∫

dNη P(N+|Nη)P(Nη). (118)

In Fig. 4, we plot the rate function �num(c) ≡
− ln P(N+=cN,N)

βN2 obtained numerically with the method ex-
plained above and compare with its analytical expression �(c)
for large N given in Eq. (92). The agreement is quite good. As
the distribution of N+ (and Nη to a lesser extent) is not smooth
for finite N , there are finite size effects and the convergence is
a bit slow in the simulations. Therefore the agreement between
numerics and the theory is less good very far from the mean
value.

IV. PROBABILITY OF A GAP [ζ1,ζ2]
IN THE SPECTRUM

As an application of the general result derived on the
two-support solution in Sec. II, here we address the natural
question: what is the probability that there are no eigenvalues
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on the interval [ζ1,ζ2] (where ζ1 � ζ2) for a Gaussian ran-
dom matrix? As discussed earlier, the natural scale for the
eigenvalues of Gaussian random matrix is ∼√

N for large
N . Hence, it is appropriate to rescale ζ1 = w1

√
N and ζ2 =

w2

√
N and denote this gap probability as P (w1,w2,N ) with

w1 � w2.
The computation of P (w1,w2,N ) (which is governed by

the sine kernel in the double-scaling limit) is performed in
two steps. First we fix the number of eigenvalues that are
bigger than w2 to be N+ = cN where c denotes the fraction.
Naturally the number of eigenvalues that are less than w1

is then N− = (1 − c)N . Let P (w1,w2,c,N ) denote the gap
probability for a given fixed c. Then the full gap probability is
obtaining by summing over all possible values of c,

P (w1,w2,N ) =
∫ 1

0
dc P (w1,w2,c,N ). (119)

The gap probability P (w1,w2,c,N ) for a fixed c and for
large N can be computed exactly in the same way as the index
distribution in Sec. II. Once again we have the optimal charge
density with two disconnected supports, one to the left of w1

and one to the right of w2. Therefore, the general solution
in (67) will still be valid with the only exception that in this
case the edges l2 = w1 (the upper edge of the left support)
and L1 = w2 (the lower edge of the right support) are already
fixed. Hence

f �
c (x) = 1

π

√(
x − l1

w1 − x

)(
L2 − x

w2 − x

)∣∣∣∣w1 − L2

2
+ w2 − l1

2
− x

∣∣∣∣
for x ∈ [l1,w1] ∪ [w2,L2]. (120)

It remains to fix the remaining two unknowns l1 (the lower
edge of the left support) and L2 (the upper edge of the right
support). They are fixed by the consistency condition (68)
which in this case reads

1 + w2
2 + 2w2L2 − 3L2

2

8

+
(

w1 − l1

8

)
(3l1 + w1 + 2L2 − 2w2) = 0 (121)

and the normalization condition
∫ L2

w2
f 2

c (x)dx = c.
One then uses this optimal solution to evaluate the saddle

point action S[f �
c (x)] [as in (77)] and compute the associated

large deviation function �(c,w1,w2) (which now depends on
w1 and w2) from (78). This gives for large N

P (w1,w2,c,N ) ≈ exp[−βN2�(c,w1,w2)]. (122)

Substituting further this result in (119) and evaluating the
integral over c by another saddle point, one finally gets the
gap probability for large N ,

P (w1,w2,N ) ≈ exp[−βN2�(w1,w2)]

with �(w1,w2) = �(c�,w1,w2), (123)

where c� minimizes the function �(c,w1,w2) over c ∈
[0,1]. Physically the quantity βN2�(w1,w2) just represents
the energy cost in separating the two blobs of charges

by a gap [w1,w2] from their natural Wigner semicircle
configuration.

In principle one can compute the large deviation function
�(w1,w2) for arbitrary [w1,w2] by following the above pro-
cedure. Here, for simplicity, we present the explicit result for
the simple case when the two walls are placed symmetrically
around the origin: w1 = −w and w2 = w. In this case, it is
evident due to the symmetry that the optimal value must be
c� = 1/2. The optimal solution in (120) for c = 1/2 is also
symmetric around x = 0 with l1 = −L and L2 = L and has
the simple form

f �
1/2(x) = 1

π

√
L2 − x2

x2 − w2
|x| for x ∈ [−L,−w] ∪ [w,L].

(124)

The only unknown L is fixed by the normalization condition∫ L

w
f �

1/2(x)dx = 1/2. This uniquely fixes

L =
√

w2 + 2. (125)

A plot of this solution is provided in Fig. 5. Note that
when w → 0, f �

1/2(x) = √
2 − x2/π reduces to the Wigner

semicircle as one would expect, because without any con-
straint the semicircle form is the natural optimal density for
c = 1/2.

Having determined the optimal solution explicitly, we next
proceed to compute the large deviation function �(c,−w,w)
from (78). For this we need to evaluate the second moment μ2

and the two Lagrange multipliers A1 and A2. Using (124) one

−2 −1 0 1 2
x

0

1

2

3

4

5

f* 1/
2(

x)

FIG. 5. (Color online) Analytical optimal density f �
1/2(x) in

(124) corresponding to a gap over the interval [−w,w] with
w = 1. The density has two disconnected symmetrical supports over
[−√

3,−1] ∪ [1,
√

3]. It vanishes at the upper edge L = √
w2 + 2 =√

3 of the right support and at the lower edge −L = −√
3 of the

left support. At the edges w1 = −1 and w2 = 1, the density has an
inverse square root divergence.
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can easily evaluate the second moment

μ2 =
∫ ∞

−∞
x2f �

1/2(x) dx = w2 + 1

2
. (126)

To fix the Lagrange multipliers, we substitute x = L and x =
−L in (75) to get two equations,

L2 + A1 + A2 = 2
∫ ∞

−∞
f �

1/2(x ′) ln(L − x ′) dx ′, (127)

L2 + A2 = 2
∫ ∞

−∞
f �

1/2(x ′) ln(L + x ′) dx ′. (128)

Using the explicit form of f �
1/2(x) in (124) it is easy to verify

that both integrals on the right hand side are identical and are
given by

I =
∫ ∞

−∞
f �

1/2(x ′) ln(L − x ′) dx ′

=
∫ L

w

f �
1/2(x ′) ln(L2 − x ′2) dx ′ = 1 − ln 2

2
. (129)

Solving these two linear equations, we get

A1 = 0 and A2 = 2I − L2 = −1 − ln 2 − w2. (130)

Substituting the values of μ2, A1, and A2 in (78) gives a very
simple expression,

�(c = 1/2,−w,w) = w2

2
; hence �(−w,w) = w2

2
.

(131)

This leads to the result that the probability that there are no
eigenvalues in the interval [−w,w] for a Gaussian random
matrix in the limit of large N is simply

P (−w,w,N ) ≈ exp

[
−β

2
w2N2

]
. (132)

Note that when w → 0, the probability approaches 1, which
is to be expected since without any constraint the system
naturally settles into the Wigner semicircle which is gapless at
the origin.

V. A FORMULA FOR THE VARIANCE OF THE INDEX
AT FINITE N FOR β = 2

So far, we have computed the index distribution in the
large-N limit. From this result, we were able to show that
the variance of the number of positive eigenvalues

�(N ) = 〈(N+ − N/2)2〉 (133)

increases logarithmically with N to leading order for large N

as in (111). A natural question is whether one can derive an
exact formula for the variance for finite N and not just for
large N . In this section, we show that at least in the special
case β = 2, it is possible to derive an exact formula for the
variance valid at fixed and finite N and it is given by

�(N ) = Z′′
N (0)

ZN (0)
− N2

4
, (134)

where

ZN (p) = det

[
[e−p + (−1)i+j ]�

(
i + j − 1

2

)]
i,j=1,...,N

(135)

and (·)′ denotes differentiation with respect to p.
In order to prove (134), we start from the probability density

function (14):

P(N+,N ) = 1

ZN

∫
(−∞,∞)N

∏
i

dλi exp

(
−β

2

N∑
i=1

λ2
i

)

×
∏
j<k

|λj − λk|βδ

(
N+ −

N∑
i=1

θ (λi)

)
(136)

and define its moment generating function (Laplace transform)
as

ZN (p) =
∫

(−∞,∞)N

N∏
i=1

dλi exp

(
−

N∑
i=1

λ2
i − p

N∑
i=1

θ (λi)

)

×
∏
j<k

|λj − λk|2. (137)

We are going to prove that

ZN (p) = N !

2N
ZN (p) (138)

where ZN (p) is given in (135). On the other hand, it is easy to
see that

�(N ) = Z′′
N (0)

ZN (0)
− N2

4
. (139)

Combining (138) with (139) we readily obtain (134).
In order to prove (138), we start from (137):

ZN (p) =
∫

(−∞,∞)N

N∏
i=1

dλi exp

(
−

N∑
i=1

λ2
i − p

N∑
i=1

θ (λi)

)

×
∏
j<k

|λj − λk|2. (140)

We can write the square of the Vandermonde determinant in
(140) as ∏

j<k

|λj − λk|2 = det[Ak(λj )] det[Bk(λj )] (141)

with Ak(x) = Bk(x) = xk−1, and then apply the Andréief
identity [40]∫ N∏

i=1

dμ(λi) det[Ak(λj )] det[Bk(λj )]

= N ! det

(∫
dμ(x)Ak(x)Bj (x)

)
(142)

valid for a benign integration measure μ(x). In our case, we
have μ(x) = e−x2−pθ(x), leading to

ZN (p) = N ! det

(∫ ∞

−∞
dx e−x2−pθ(x)xk+j−2

)
. (143)

Evaluating the integral, we get immediately to Eq. (138).
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From this determinantal representation for the variance in
Eq. (134), Prellberg [41] noted that the following exact formula
for the variance of the index for β = 2 holds:

�(N ) = N

4
− 2

π2

∑
1�i<j�N

i+j odd

1

(i − j )2

�
(⌊

i
2

⌋ + 1
2

)
�
(⌊

j

2

⌋ + 1
2

)
�
(⌊

i+1
2

⌋)
�
(⌊

j+1
2

⌋) ,

(144)

where �x� stands for the greatest integer less than or equal to
x, and �(x) is the Gamma function.

It is convenient to group the terms in the sum for even and
odd terms. In this way we can perform one of the sums and we
can write for even N (144) as

�(N ) = N

4
− 2

π2

N/2−1∑
m=0

tm, (145)

where

tm = �(m + 1/2)2

�(m)�(m + 1)
4F3

(
1

2
,
1

2
,1,1 − m;

3

2
,
3

2
,
1

2
− m|1

)
+ �(m + 1/2)�(m + 3/2)

�(m + 1)2 4F3

(
1

2
,
1

2
,1,−m;

3

2
,
3

2
,
1

2
− m|1

)
.

(146)

Here 4F3 is a generalized hypergeometric function. As this expression is complicated to the point of being useless (except for
numerical analyses) we look for an integral representation for tm. We achieve this by writing the defining series expansion for the
hypergeometric function, using an integral representation for the � functions in its coefficients and then exchanging the integral
and the sum. The final result is expressed as an integral over a new variable t ∈ [0,1] as:

tm = π2

2
− 1

2
√

π

(m − 1/2)!

m!

∫ 1

0
dt

tm√
1 − t

{tanh−1(
√

t) + (2m + 1)[Li2(
√

t) − Li2(−√
t)}︸ ︷︷ ︸

Im

, (147)

where Li2(z) = ∑∞
k=0

zk

k2 is the polylogarithm function.
Now, we separate the integral Im into two terms,

Im = I(1)
m + I(2)

m =
∫ 1

0
dt

tm√
1 − t

tanh−1(
√

t)

+
∫ 1

0
dt

tm√
1 − t

(2m + 1)[Li2(
√

t) − Li2(−√
t)]

(148)

and we separate further the second integral as

I(2)
m =

∫ 1

0
dt

tm√
1 − t

(2m + 1)[Li2(
√

t) − Li2(−√
t) − π2/4]

+ π2

4
(2m + 1)

∫ 1

0
dt

tm√
1 − t

=
∫ 1

0
dt

tm√
1 − t

(2m + 1)[Li2(
√

t) − Li2(−√
t) − π2/4]

+ π5/2m!

2(m − 1/2)!
. (149)

The last term, when inserted back in (147), cancels half of the
constant π2/2 in tm so we are left with

tm = π2

4
− (m − 1/2)!

2π1/2m!

∫ 1

0
dt

tm√
1 − t

×
{

tanh−1(
√

t) + (2m + 1)

[
Li2(

√
t) − Li2(−√

t) − π2

4

]}
.

(150)

An integration by parts on the term in the integrand linear in m

(considering that ∂t [Li2(
√

t) − Li2(−√
t)] = tanh−1(

√
t)/t)

gives

tm = π2

4
− (m − 1/2)!

2π1/2m!

∫ 1

0
dt

tm√
1 − t

×
[

1

1 − t

(
π2

4
+ Li2(−√

t) − Li2(
√

t)

)
− tanh−1(

√
t)

]
.

(151)

We need to sum this expression over m = 0, . . . ,N/2 − 1 to
get �(N ). The constant term in tm will cancel against the linear
term N/4 in � and a compact integral representation for �(N )
can now be obtained by exchanging the order of integration
over t and summation over m:

�(N )= 1

π5/2

∫ 1

0
dt K(t,N )

1√
1 − t

×
[

1

1 − t

(
π2

4
+ Li2(−√

t) − Li2(
√

t)

)
− tanh−1(

√
t)

]
,

(152)

where

K(t,N ) =
N/2−1∑
m=0

(m − 1/2)!

m!
tm

= (1 − t)−1/2

(
√

π − B(t ; N/2,1/2)
�
(

1+N
2

)
�(N/2)

)
,

(153)

where B is the incomplete Euler Beta function, defined as
B(z; a,b) = ∫ z

0 dτ τa−1(1 − τ )b−1.
This representation turns out to be very useful to pull out

the large-N logarithmic growth of �(N ) and the constant term
(and possibly could yield a complete asymptotic expansion
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in 1/N ). In order to do this we notice that for large N the
function K(t,N ) is concentrated near t = 1. So we expand
the remaining integrand to lowest order in 1 − t , obtaining the
leading order and part of the constant term as

1

2π5/2

∫ 1

0
dt K(t,N )(1 − t)−1/2

= 1

2π2
ln N + 1

2π2
(γ + ln 2) + O(N−1), (154)

where γ = 0.577 215 . . . is Euler’s constant.
One can prove that the remaining terms in the expansion

in powers of (1 − t) contribute to O(1) but not to the leading
logarithm. We can formally lump these terms together and we
can write the asymptotic law for �(N ) as

�(N ) = 1

2π2
ln N + C + O(N−1), (155)

where the constant C is

C = 1

2π2
(γ + ln 2) + lim

N→∞
1

π5/2

∫ 1

0
dt K(t,N )

1√
1 − t

[
1

1 − t

(
π2

4
+ Li2(−√

t) − Li2(
√

t)

)
− tanh−1(

√
t) − 1

2

]
. (156)

Now the limit N → ∞ can be taken safely inside the integral (Euler’s B function goes to zero) and we are left with the following
nontrivial constant:

C = 1

2π2
(γ + ln 2) + 1

π2

∫ 1

0
dt

−2 + π2 + 2t − 4(1 − t) tanh−1(
√

t) − 4Li2(
√

t) + 4Li2(−√
t)

4(1 − t)2

= γ + 1 + 3 ln 2

2π2
= 0.185 248 418 2 . . . , (157)

where in the last step we have performed one extra integration
by parts. The constant C is in good agreement with the fit of
the finite N results for large N (see Fig. 6). A careful series
expansion of K(t,N ) for large N should give the complete
1/N expansion of �(N ). This is left for future work.

VI. CONCLUSIONS

In summary, we have computed for large N the probability
that a Gaussian matrix N × N with real spectrum has a fraction
c of positive eigenvalues. Using a Coulomb gas method, a large
deviation principle for this probability can be formulated. In
physical terms, the problem amounts to finding the free energy
of a system of charged particles repelling each other via a 2D

100 200 300150

0.38

0.40

0.42

0.44

0.46

0.48

N

FIG. 6. (Color online) The variance of the index �(N ) as a
function of ln(N ) for β = 2 [dotted, exact finite N formula in (145);
solid, large N in (155)]. A linear fit for the former gives �(N ) �
0.052 ln N + 0.184. The prefactor 0.052 is in good agreement with
the leading theoretical prefactor (2π 2)−1 � 0.051, and the constant
correction term 0.184 is also in good agreement with the theoretical
constant C in (157).

Coulomb interaction and confined into a quadratic well, with
the constraint that a fraction c of them is kept on the positive
semiaxis. Due to the long-range nature of the interaction, the
free energy is superextensive in the number of particles, and
scales as ∼O(N2), as it is customary in this type of problem.
We have computed explicitly the large deviation function �(c),
which quantifies the rate of occurrence of unusual fluctuations
of the index, for all 0 � c � 1. This function has a minimum
at c = 1/2 around which it has a quadratic form modulated by
a logarithmic singularity. This logarithmic singularity leads to
the result that the variance of the index displays a logarithmic
growth with the matrix size N for all β. For β = 2, we have
found a representation of the variance in terms of derivatives
of a certain Hankel determinant. Based on this representation,
Prellberg [41] was able to give an explicit expression for the
index variance involving a finite double sum. We performed an
asymptotic analysis of Prellberg’s finite N expression, whose
leading behavior is precisely ∼(2π2)−1 ln(N ), in perfect agree-
ment with our Coulomb gas result. In addition, we determined
exactly the constant term C in the expansion for even N , which
turns out to be a highly nontrivial value as in Eq. (157).

We have also presented a general method to obtain explicitly
a two-support solution of a singular integral equation of the
form (27). This method consists in iterating the single-support
Tricomi solution twice. We have demonstrated how this
method can be used to compute the probability of a gap [ζ1,ζ2]
in the spectrum of the eigenvalues. Given the fact that singular
integral equations of the type (27) occur quite generically for
other random matrices (such as Wishart matrices [42]), we
expect that this method will be useful in a broad variety of
applications.
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