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We develop a general Langevin formalism for the dynamics after a quench to a critical point

or an ordered phase, and use this to study a few specific cases.

We present a general argument

that for d spatial dimensions and conserved order parameter, the local autocorrelations decay as
(¢ (r,0) ¢(r,1)) ~ L™4(z), where L(z) is the correlation length at time ¢, and ¢ is the order parameter.
We also present new analytical and numerical results for the coarsening process after a quench to zero
temperature in the ferromagnetic Ising chain with conserved magnetization.

PACS numbers: 75.10.Hk, 64.60.Cn, 64.60.My, 64.70.Md

The kinetics of phase separation following a quench
from a high temperature disordered phase to a low tem-
perature ordered phase has been a subject of continual
and growing interest [1]. After the quench, domains of
the equilibrium ordered phases form and coarsen with
time as the system achieves local equilibrium on larger
and larger length scales. This coarsening process gener-
ally exhibits dynamic scaling at the late stage of growth,
i.e., the system is described by a single length scale
L(t) (namely the characteristic linear size of the do-
mains) which grows with time as L(¢r) ~ ¢". Accord-
ing to the dynamic scaling hypothesis [2], the equal
time correlation function, G(r,t) = {(p&’,t) p(x’ + r,1))
[where ¢(r,) denotes the order parameter field] scales as
G(r,t) ~ flr/L(z)] at large times after the quench. The
average (()) is over all possible initial conditions and
the histories of evolution. Another quantity of interest is
the local autocorrelation function, A(z) = (¢ (r,0) ¢(r, 1)),
which measures the correlation with the initial condi-
tion (¢ = 0) and decays as L™*(¢t). For quenches to the
critical point T = T,, the correlation length grows with
exponent n. = 1/z, where z is the usual dynamic criti-
cal exponent. The exponent A. for the autocorrelation,
A(t) ~ L™ ~ 172/ after a quench to 7. is a new
nonequilibrium critical exponent [3, 4].

The exponents 7, A, A, and the scaling functions depend
crucially on the conservation laws satisfied by the dynam-
ics. For example, the exponent n has been argued to be
1/2 and 1/3 for nonconserved [5] and conserved [6] scalar
order parameter, respectively, for dimensions d = 2. For
vector order parameter, they are respectively 1/2 and 1/4
ford > 2 [7]. Ind = 1, the exact solution of the noncon-
served zero temperature Glauber dynamics gives n = 1/2
and A = A, = 1 [8]. A few results are known for A or
A. in higher dimensions. For the nonconserved case, they
have been obtained analytically for the O(m) model in
the limit m — o for d > 2 [4,9]. For 2D nonconserved
Ising (m = 1) dynamics, A = 5/4 theoretically [10] and
experimentally [11]. Apart from these, there have been
numerical studies for A [12] and A, [3] in higher d for the
nonconserved case. Comparatively, not much is known
about A or A. in the conserved case. For the conserved

O(m) model in the m — o limit, Bray has shown A, = d
for all d [13]. Fisher and Huse [10] have proposed bounds
on A, namely, d/2 = A =< d. The autocorrelations after a
quench have been measured using video microscopy [11]
and may also be measured via the autocorrelations of the
speckle pattern seen in coherent light or x-ray scattering.

In this Letter, we present a simple general argument,
assuming scaling, that concludes A = A, = d for the con-
served case for all 4. This result applies for both scalar
and vector order parameters. In particular, we study, both
analytically and numerically, the 1D conserved dynam-
ics for the Ising model in the limit 7 — 0 and show that
A = A, = 1 at par with our general result.

Let us first present the general argument as follows.
Let {¢(k,?)} denote the Fourier transforms of the order
parameter field ¢(r,7). Then the evolution equation of
¢(k, 1), assuming a noisy relaxational dynamics, can be
written quite generally as

2080 bk g ('.01) + ik, r {0 0D). (D)
where D and % denote, respectively, the determin-
istic and the stochastic part of the evolution. Thus
for fixed k and {¢(k/,r)}, the average value of
dp(k,t)/at is D(k,{¢(k’,1)}) while the average value of
n vanishes. For continuum Langevin-type models with
nonconserved (model A) and conserved (model B) order
parameters [14], the noise 7 is generally assumed to
be uncorrelated Gaussian white noise with zero average
and an amplitude independent of {¢(k’,7)} and z. The
mean square amplitude is k independent for model
A and is proportional to k> for model B. But more
generally, and specifically for Glauber (spin-flip) and
Kawasaki (spin-exchange) dynamics of discrete hard spin
systems, the noise amplitude may depend on both k and
{¢(k’,1)}. It is then easy to see that the two-time corre-
lation function C(k,0,1) = (¢(—k,0)¢(k,?)) evolves as
C(k,0,1) = C(k,0,0)exp[ [, T (k, ') dt'] where

I'k,1) = (¢(—-k,00 D(k,{p(k',1)})) /{$(—k,0) S (Kk,1)) .

C(k,0,0), for random initial conditions, is a constant of
O(1) independent of k. Assuming C(k,0,t) scales, it
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follows that TI'(k,z) should scale as T(k,z)~
(1/2) v [kL(¢)] for large ¢, where y(x) is a scaling func-
tion. Assuming L(r) ~ ", in the large ¢ scaling limit
we get C(k,0,1) ~ exp[n~! f:,fi') v(y)dy/y], where L,
is a microscopic length, representing the initial cor-
relation length. Writing y(y) = y(0) + vi(y), where

¥1(y) — 0 as y — 0, one gets

C(k,0,1) ~ [L(O]" " Fi[kL (1)) )
where  Fi(x) = exp[(1/n) [gdy v1(») /y].  Clearly
then, the local autocorrelation function A(r) ~

fC(k,0,t)d?k ~ [L(1)]™*, withA =d — y(0)/n. In
the conserved case where the total order parameter,
¢(k = 0), is constant, C(0,0, ¢) is independent of ¢ imply-
ing T'(0,¢) = 0, and hence y(0) = 0 identically. Thus the
scaling assumption implies A = d for the conserved case
quite generally. This general argument applies even for
quenches to 7, and therefore we expect A, = d as well.
Recent numerical simulation [15] of the critical dynamics
of a spin-exchange kinetic Ising model in 2D yields
Ac = 2.0, in excellent agreement with our general result.
For the nonconserved case, on the other hand, y(0) may
be nonzero and A is thus different from d in general.

As a specific example of this general result, we
now consider the 1D nearest neighbor spin-exchange
(Kawasaki) kinetic Ising model. The 1D conserved
dynamics is special and interesting for another reason.
In 1D, as opposed to higher dimensions, the ordered
phases coexist only at 7 = 0 and therefore coarsening
can occur only at T = 0. For the nonconserved Glauber
dynamics at T = 0 in 1D, domains grow indefinitely via
the random diffusion and annihilation of kinks (domain
walls). However, in the conserved case at 7 = 0, the
domains stop growing indefinitely when the system gets
“trapped” in a metastable excited state with isolated
domain walls [16]. Thus the question is what happens
to the coarsening process in 1D for the conserved case.

Coarsening occurs only in the limit 7 — 0 and on
a special time scale. For finite 7, the 1D Kawasaki
dynamics has been studied numerically [17,18]. By
considering the most elementary thermal excitation out of
a metastable state, it was argued in [18] that for small 7,
each domain as a whole performs random walk with a rate
proportional to 1/L where L is the length of the domain.
It is then easy to see that if one rescales time by the factor
exp(—4J/kgT) (where J is the exchange coupling and
kp is Boltzmann’s constant) and takes the limit 7 — O,
then on this rescaled time scale 7 = ¢ exp(— 4J/kgT),
the original Kawasaki dynamics is effectively described
by the above “domain” model of Cornell, Kaski, and
Stinchecombe [18]. Coarsening occurs on this rescaled
time scale via the merging of the diffusing domains and
it is then easy to argue that the length scale of domains
grow as L(7) ~ 713 as in higher dimensions. However,
it is important to realize that this scaling holds only on
the rescaled time scale r with the T — O limit taken

properly. Thus to obtain the real scaling behavior of the
coarsening process, it is necessary to study and simulate
directly the stochastic domain model as described above
rather than the finite temperature Kawasaki dynamics as
studied previously [17,18]. We study this domain model
both numerically and analytically.

Let us first discuss the results of direct simulation of
the domain model. The simulation picks a domain i with
probability L;'/3;L;"' and then randomly chooses to
move it to the left or right. It then increments the time 7
by a random number taken from the Poisson distribution
p(x) = w exp(—ux) with u = >, L;'. This process is
quite rapid and we have been able to simulate very large
times of order 10®. The simulation is typically done
on a lattice with 10° sites but was repeated for smaller
lattices to verify that there are no finite size effects in the
time regime we study. The dynamics for L = 1,2 is not
modeled precisely in our simulation, but this should not
affect universal properties at late times.

In Fig. 1, we show the average domain size (L)
(averaged over 9 runs) as a function of time on a log-log
plot. We get a very good straight line at late times with
a slope 0.33 = 0.01 supporting n = 1/3. In Fig. 2, we
plot the equal time correlation function G(r,t) averaged
over 350 runs as a function of the scaled distance r/{L)
at five different times. These curves fall on top of
each other exhibiting dynamic scaling at late times.
Shown in Fig. 3 is the two-time correlation function
{s(r',0)s(r" + r,t)) [normalized by the autocorrelation
function A(z) = {(s(0,0)s(0,¢))] as a function of the scaled
distance for five different times. In Fig. 4, we show
the autocorrelation function A(z) as a function of L (z)
on a log-log plot. The slope of the straight line gives
A =1.00 = 0.01.

We now show explicitly that the 1D dynamics both
for nonconserved and conserved cases can be cast in the
form of Eq. (1). Consider an arbitrary spin configuration

350 T T T T T
3.00 — —
250 -
=
=
N
_ 200 |~ —
=
=
oy 150 |- —
3
1.00 | —
050 |~ LT —
0.00 L ] 1 1 ]
-200 000 200 400 6.00 800 10 00
Log,[t]
FIG. 1. The average domain size L(¢) (averaged over 9 runs

on samples of size 2 X 10° sites) as a function of time ¢ on
a log-log plot. The slope of the straight line at late times is
0.33 £ 0.01. The error bars are smaller than the symbol sizes.
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FIG. 2. The equal-time correlation function (s(0,?)s(r,1)) FIG. 3. The two-time correlation function (s(0,0) s(r, t)) [nor-
(averaged over 350 runs on samples of size 10° sites) as a malized by the autocorrelation A(r) and averaged over 350 runs
function of the scaled distance r/L(¢) at five different times as in Fig. 2] as a function of the scaled distance r/L(z) when L
(shown by symbols) when L is 53.10, 104.32, 206.78, 411.52,  is 14.70, 27.50, 53.10, 104.32, and 206.78.

and 822.37.

where the domains are sequenced as 1,2,...,n,... and x,
{¢(x,1); ¢(x,1) = =1} on a 1D lattice. The Fourier  represents the position of the domain wall separating
transform ¢ (k,7) = (1/v/N)Y, ¢(x,1)exp(ikx), where N the (n — 1)th domain and the nth domain. Let us
is the total number of spins, can be written in a domain  first consider the nonconserved zero temperature Glauber
wall representation as dynamics. In this case, each wall executes a simple
_ 1 _ . random walk. The increment in ¢(k,t) in a small time

$k.1) = i/N sin(k/2) Z( D" explikxa) . (3) interval At is given by

1 n . .

NN g( 1)" exp(ikx,) [exp(iks,) — 11, @
where the ¢,(s)’s are the distances moved by the |

walls in Ar. They are independent random variables of large ¢+ and small k, I'(k,1) ~ (1/¢) y[kL()] with
each taking values +1, —1, or0 with probabilites L(z) ~ ¢'/2 and y(x) = x2. Thus y(0) = 0 and hence
%At, %At, and 1 — At, respectively. Taking the limit A = 1 for the nonconserved case. The structure factor
At — 0, the equation of motion can then be written in the  S(k,?) = (¢(—k,?) ¢(k,?)) can also be computed exactly
form of Eq. (1) with D(k,t) = — (1 — cosk)¢(k,) and by this method and scales as S(k,r) ~ L(t)F[kL(t)]
the stochastic part n(k,?) is Gaussian with zero average  with F(x) = x™! [fexp[— (x? — y?) /2]dy. In fact, to
and (', tYn(k, 1)) = 4 cos? (k/2)p(t)Sr+i8(t — 1), our knowledge, this is a new way of solving the zero-
where p(t) = L™'(¢) is the average density of domain  temperature 1D Glauber dynamics.

Ap(k,t) =

walls at time z. Thus, following our general discus- We now turn to the conserved case. Proceeding as
sion, T'(k,r) = —(1 — cosk) and in the scaling limit  above, the increment in ¢(k,?) in time At is
|
1 . . .
Agp(k,t) = m %(—l)nb [exp(thlL)) - exp(zkxg)] [exp(tk{D) -1], 5)

where np denotes the sequence number of the domain D and x5 and x5 denote the locations of the left and right wall
of the domain D. The sum is over all domains. The random variables {p’s are once again independent and each takes
values +1 with probability (1/2Lp) At, —1 with probability (1/2Lp) At, and 0 with probability 1 — (1/Lp) At, where
Lp is the length of the domain. Once again, the equation of motion can be broken into two parts as in Eq. (1) with the
deterministic part D(k, t) given by

D) = —- 222k 5 OV 1o ) — exp(ikaf)] ©

: 2iJN sin(k/2) & Lo PUE*p PUE*D

and the noise 7n(k, ¢) has zero average. Assuming further that p(Lp,t), the fraction of domains of length Lp at time ¢
scales as p(L,1) ~ L(t)™" fo(Lp/L (1)), the two point correlator of the noise can be shown to be

(', ") n(k, 1)) = L™2 (t)glkL(t)] S44n8(t — t') , @)
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1.0 T is a constant. Thus, y(0) = 0 and hence A, =d as
1 expected.

14 7 S.M. wants to thank O. Narayan and A.J. Bray for
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FIG. 4. The autocorrelation function A(t) = (s(r,0)s(r,1))
(averaged over 350 runs as in Fig. 3) as a function of L (¢)
on a log-log plot. The slope is —1.00 = 0.01.
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where g(x) = 2 [ dy fo(y) (1 — cosxy) /y. Note that the
deterministic part D(k, t) is no longer simply proportional
to ¢(k,t) as it is in the Glauber case. Thus although we
get an explicit form of I'(k,?), it is hard to express the
scaling function y(x) in a closed form. However, it is
clear that y(x) — 0 as x — 0 yielding A = 1 at par with
the simulation and our general argument. For the same
reason, we could not get a closed form expression of
the structure factor scaling function F(x). However, for
small x = kL(t), it can be seen that F(x) = ax?> + O(x*)
where the constant a = ~% [o FO)y2dy, with f(y) the
scaling function for the equal time correlation in real
space (as shown in Fig. 2); numerically we find a =
0.168. This behavior is in contrast to higher dimensions
where simulations [19] and phenomenological arguments
[20] show that F(x) ~ x® with & = 4 for quenches into
the ordered phase. In one dimension, the presence of
the quadratic term in the structure factor for small wave
vector indicates that for small k, the growth of structure
factor is solely due to the noise term which thus plays an
important role in the coarsening process in 1D as opposed
to higher dimensions where the noise has been argued to
be irrelevant [2,21].

Another interesting case where one can compute the
function I'(k, ¢) explicitly is the m — o limit of the O(m)
model. In the nonconserved case [9], it can be simply
shown that for large time ¢, I'(k,t) = (1/t)y(k/t) with
v(x) = d/4 — x>. Thus y(0) = d/4 and since n = 1/2,
we get A =d — y(0)/n = d/2. In case of quench to
the critical point [4], y(x) = €/4 — x?for2 < d < 4,
where € = 4 — d and, therefore, A, = d — €/2. For
d = 4, y(x) = —x? and hence A, = d. For quenches to
below T. in the conserved case, it is known [9] that
scaling breaks down in the m — o« limit due to the fact
that the ¢+ — © and m — o« limits do not commute [22].
However, for a conserved quench to the critical point,
scaling is recovered [13] and then it can be shown that
[(k,t) = (1/)y(kt"/*) with y(x) = cx? — x* where ¢
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