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Nonequilibrium Dynamics following a Quench to the Critical Point in a Semi-infinite System
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We study the nonequilibrium dynamics (purely dissipative and relaxational) in a semi-infinite system
following a quench from the high temperature disordered phase to its critical temperature. We show
that the local autocorrelation near the surface of a semi-infinite system decays algebraically in time
with a new exponent which is different from the bulk. We calculate this new nonequilibrium surface
exponent in several cases, both analytically and numerically.
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There has been a lot of current interest in understandsf a surface at = 0. The model is described by an
ing the growth of correlations in a system after beingcomponent order parameter fiel;d =[¢1,...,¢,] and
quenched from the high temperature disordered phase tpcoarse grained Landau-Ginzburg free energy functional
or below its critical temperatur€l.) [1]. In either case with an additional surface contribution [15],
the system exhibits dynamic scaling at late stage of the . 1 dorro g a0 8 0
growth. The growth is characterized by a single time ~ F(¢) = — f d°3[(Vp)™ + ro¢p” + 4 (@7
dependent length scale. For quench to belBw this .
length scale characterizes the linear size of the growing + c8(z)9?]. (1)
domains of competing broken symmetry phases. On theshere the integration in Eg. (1) is over the half-space
other hand, for quench @, it characterizes the length z = 0. The equilibrium properties of this model have
scale over which equilibrium critical properties are estabbeen studied in detail [14,15]. Depending upon the value
lished. A lot of theoretical and experimental efforts haveof ¢, different types of surface orderings take place.
been directed in determining the time dependence of thihere exists a special value= ¢* such that, forc >
length scale and the scaling of the equal-time correlatior™, the surface orders along with the bulk at bulk.
functions. It was, however, realized later that even theThis parasitical transition is called “ordinary” transition
two-time correlation functions have interesting dynamical[14,15]. Forc < ¢* and in high enough dimensions (such
scaling [2,3]. In particular, the autocorrelation function,that ad — 1 dimensional surface can order), the surface
measuring the memory of the initial conditions retained byorders first as the temperature is lowered, while the bulk
the system after timg decays algebraically with time [2]. is still disordered (“surface” transition) and then as the
This has been verified by exact calculations in a few caseemperature is lowered further the bulk orders in presence
[4-9], numerical simulations [10] and very recently ex-of an ordered surface (“extraordinary” transition). The
perimentally [11] for quench t@ < T, in a liquid crys-  valuec = ¢™ is a special point where the critical exponents
tal system using video microscopy. are different from the ordinary or surface transitions. This

In static critical phenomena, it is well known that the is called the “special” transition. Within mean field theory,
critical behavior near the boundary of a semi-infinite sys<™ = 0 but becomes nonzero far < 4 due to corrections
tem is drastically different from the behavior deep insidearising from fluctuations [15]. The critical exponents
the bulk [12—-18]. It is therefore natural and important toassociated with these different types of transitions are
know whether there are similar modifications in the dy-different from each other and from the bulk values [15].
namical behavior near the boundary. In this Letter we In this paper, we consider the nonconserved dynam-
demonstrate, both analytically and numerically, that thécs of the order parameter field (model A as in [19]) in
temporal decay of the critical autocorrelations near thg@resence of a surface following a quench from the high
boundary of a semi-infinite system is characterized bytemperature disorderdd@ > T.) to the bulk critical point
new exponents different from that in the bulk. T = T. and ask whether the presence of the surface mod-

We consider a semi-infinit@®(n) model in the space ifies the dynamics near the surface. Far from the surface
[x = (7,z)] which extends over infinite space th— 1  one should recover the critical dynamics of a truly infinite
directions (denoted bk) and over only positive half-space system for which several results are known. For example,
in one direction(z = 0). The system is assumed to be it is now well established [20,21] that the bulk equal-time
translationally invariant in thé — 1 directions, and this correlation functionG(x, ) = (¢ (X', t)d (&' + X,1)), ex-
invariance is broken in the direction due to the presence hibits dynamic scalingG (%,1) ~ x~@=2*Mg (x/&(1)),
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whereg. is a universal scaling function argls) ~ /2 field ¢(%,¢) is completely random ana controls the
is the time-dependent correlation lengtty and Z are  size of initial onsite fluctuations irp]. Similarly, the
the usual static and dynamic exponents and {thele-  symmetrized two-time correlation functiofi(k, z, z', t)
notes an average over all possible initial conditions (corgefined as the Fourier transform (ﬁ's(];’z,zl’t) =
responding to the equilibrium distribution at the initial %<(¢(;/’ZI’0)¢(;/ + Rt + ¢, 06F + 7,2,0)
high temperature) and over the history of time evolu-gyglves as

tion. The bulk two-time correlation functiod'(x, ) = R 1 R
(p(X',0)¢(X' + X,1)), measuring the correlation with the  9,C,(k,z,z/,1) = —[-2k*> + 82 + 82]Cs(k,z,2',1),
initial condition, also exhibits dynamic scaling [12,13], 2

C(x,1) ~ [£(®)] fo(x/&(t)), wheref.(0) is a constant 4)
of O(1). The exponent)., characterizing the decay with the same boundary and initial conditions. By
of the bulk autocorrelatlonAb(t) = <(]’)(X,0)¢(X, t)> ~ Choosing the basis function

[£(1)]*, is a new critical exponent [20,21] in the sense |

that no simple scaling relation has been found relating it ¢ (u,z) = —[exp(iuz) - - exp(—iuz)}, 5)

to other static or dynamic critical exponents. For an in- V2 ¢t iu

finite system,A. has been calculated analytically for the it is easy to see that the solutions to Egs. (3) and (4)
O(n) model in the limitn — o and also withine expan- are given by G(k,z,z’,1) = [~ dugy(u,z)¢™(u,z') X
sion wheree = 4 — d (d = 4 being the upper critical £, (k,u,t) and Cy(k,z, 2", 1) = [~ dup(u,2)™ (u,z') ¥
dimension) [21]. For the Ising model th= 2 and 3,A.  f,(k,u, t), where

—iu

has been determined numerically [20]. _ (12 2
The specific dynamical quantity that we calculate filkou, 1) = A ex =2(k" + wy]
explicitly in this paper for the semi-infinite system, and + 1= exd —2(k* + u?)t (©6)
show that it gets drastically modified due to the presence k2 + u? ’
of the surface, is the decay of the autocorrelati¢n r) = folk,u, 1) = Aexd—(k*> + u)1]. @

(p(7,2,0)p (7, z, 1)) with time ¢. In the limit 7 — o, we .

recover, as expected, the bulk results:, 1) ~ [¢(r)]»,  Therefore the autocorrelatiof(z,r) = [ C,(k,z,z,1) X
where we denote the bulk. by A,. However, for smalt 49 'k/(27)?" ! is given by

near the surface, we find that the autocorrelator decays as -y [ 5

A,(t) ~ [£()] ", where A, is a new dynamical surface  A(z.1) ~ 1 fo duexp(—ut)

exponent different from,. Also, the value ofA; depends
explicitly on the type of the surface transition. In this (8)
paper, we calculaté, analytically withine expansion and c? + u?

in then — o limit for the ordinary and special transitions. It is clear from Eq. (8) that in the limit; — o« we
Also, we determine the value of, numerically for the recover the bulk result: for large, A(e, 1) ~ [£(1)] ¢,

y (c sinuz + ucosuz)?

two-dimensional Ising model. where £(r) ~ 1'/2 (Z = 2 within Gaussian theory) and
The model-A dynamics of the order parameter is govhenceA, = d. On the other hand, for = 0, we find
erned by the Langevin equation, that, for larger, A(0,7) ~ [£(r)]7 "2 for ¢ >0 and
an/at _ —BF/(SJ) + 7, ) A(0,1) ~ [£(r)]7? for ¢ = 0. Thus we obtain the results

. i R . that for the special transitioc = 0) Ay, = d while for
where F* is given by Eq.(1), and7(X,7) iS @ the ordinary transitioric > 0), Ao, = d + 2 within the
Gaussian noise with zero average and a correlalsy ssian theory. It is interesting to note that while
(i (¥, ) (&', 1)) = 2kpT 8, ;8(x — X)8(t — 1), where  gqjigfies the upper bountl, = d conjectured by Fisher
T is the temperature. We first consider the GaussiaQ,q Huse [2], clearly\,, violates this upper bound.
theory where one neglects the interaction [get 0 in For d < 4, where the interaction term is no longer
Eq. (1)] and which is valid ford > 4. We define the irelevant, we evaluate the exponemt in e = 4 —
Fourier transformatiorG (k,z,z',1) = [d*"'(F = ') X 4 expansion. The two-time correlator (unsymmetrized)

G(r — 7,z,7,t)exdik - ( — )], where k is a C@&,¥,1) = (¢p({F,0)¢(*, 1)) in real space evolves as
(d — 1)-dimensional vector in the reciprocal space. Then

from Eqg. (2), at the critical pointr = 0 and setting 3,C(xX, %', 1) =[—ry + VFIC(Z, X', 1)
kgT. = 1), G(k,z,7',t) evolves as . . )
9,G(k,z,2',1) = [-2k* + 9> + 021G (k,z,7',1) o izj<¢i(x ,0)i(x, 1)
+ 28(z — 7), 3) X ¢i(%.1);(% ). (9)

with the boundary conditio).G = ¢G at z =0 and At the Wilson-Fisher fixed pointg = 87%€/(n + 8)
the initial condition G(k,z,z/,0) = A8(z — 7/) [this to leading order ine [15]. This allows one to calcu-
“white noise” form of the initial condition corresponds late the corrections to the two-point correlator pertuba-
to quench from the infinite temperature, where thetively in g. To leading order ire, the term proportional
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to g in Eq. (9) can be expressed, using Wick's theo-x — 0 and g(x) — 0 asx — «. The values ofa and
rem, in terms of the mean-field propagators-ag(n +  u are determined, respectively, from the limigs— «
2)Go(x, x,1)Co(x', X,1), where Gy and Cy, denote the (bulk dynamics) and — < (static limit) and are already
mean-field equal-time and two-time propagators, respedinown to bea = (d — 4)/2 [11], usp, = (d — 5)/2 and
tively. To leading order ire, one can replac€y in this  u, = (d — 3)/2 [15]. The full form of the scaling
term by C, and then Eq. (9) becomes a linear evolutionfunction g(x) is to be determined from a complicated
equation for the two-time correlator which is correct toself-consistent equation. However, for the purpose of
O(e). This evolution equation, for the symmetrized cor-determining the surface exponert, it is sufficient
relatorC,(x,x’, t), reads to know that g(0) = 1. We then proceed identically
as in the case ok expansion by assuming a scaling
ansatz forCy(k,z,z',t). We find « = (1 + a)/2 and
. s(s — 1) = u?> — 1/4. Using the fact thaZ = 2 in the

= V@ 0JC (. %), (20) " Jarge  limit, we obtain Asp—(5d—12)/2 AN Aor—(sd—g)/2-
with 7o = rg + g(n + 2)Go(», %, »), where Go(x,x’,1)  Note that in the limitz — « we recover the bulk result
denotes the mean-field equal-time propagatori, = (3d — 4)/2. These results are consistent with
The potential V(z,t) = g(n + 2) f[Go(/;,Z,Z,t) —  those obtained frora expansion after taking — o limit
Go(k, ,%,%)]d3(k)/(27)} captures the corrections due and also with the mean field resultsdn= 4.
to fluctuations ford < 4 and can be calculated explicity. ~We have also carried out a direct numerical simulation
For example, at the specid@t = 0) and the ordinary Of the two-dimensional Ising model with open boundary
(c = =) fixed points, we getVy,(x,x,t) = —g(n + conditions at _the bulk critical temperature using a spi_n-
D[l + (2t/22) exp—z2/20)]/327% and Voi(z,z,1) =  flop Me_tropolls algorithm. We measure boundary spin
—g(n + 2)[1 — 2t/z2)exp(—z2/21)]/327%t in the correlations and compare them with the corresponding
scaling regime wherez > A~!, A being the upper bulk measurements done with periodic boundary condi-
cutoff. tions. In the static limit, it is well known that the bound-

Equation (10) and the form of the potentlalz, r) sug- ~ ary spins order only due to the ordering of the bulk spins
gest a late time scaling ansatz for the Fourier transfornfordinary transition) [13—15]. Since &t in the static
Cc(/; 2.2, 1) ~ 1@ exp(—k20)fz//1,7'/\i]. To deter- limit, the boundary correlator falls off with distaneeas
mine the exponent we first consider the bulk limig —  1/7 (&8s opposed to the bulk decay'/*) for larger [22],
0,7/ — . Using V(s,%,1) = —g(n + 2)/3272¢ and it is natural to assume a dynamic scaling form for the

o ' L 1 equal-time boundary correlat@,(r, 1) ~ r~'y(r/&(1))

g = 87%€/(n + 8) in Eq. (10) we geta = 5 — (n + q \ ary ¢ s\ 8= 1Y
2)e/a(n + 8) andf(x.y) ~ e~ asx,y 2 itfol. &t late imes. Itis believed that even in the presence of
lows immediately that the bulk autocorrelation(r) ~ & Poundary there is still only a single time-dependent cor-
1~ld~+2)/@+9)€/2)2 Since the dynamic exponedt — relation length&(r) ~ /2 with Z =~ 2.15 numerically
) e [23,24]. The quantityy,(r) = ((M,(¢))?) [M,(t) being
2 + 0(€?), we recover the bulk result, = d — = = o Loa :
' b n+8 2 the total boundary magnetization at timds the integral
I : behavi £ th ing funcii %f the correlation functior]fx drGy(r,t) on the boundary.
Iséma arglLIJmen € avuf 0 Xe Siab'”gl +unc2|ﬁ$c,y). From the scaling form of(r, 1), x,(¢) would then grow
or small x,y, f(x’nygz - (y)(a + bx® + ey + ) logarithmically with £(r) (and hence logarithmically with

where s(s — 1) = =55 5 and * corresponds to spe- " | contrast, the corresponding quantity in the bulk,
cial and to ordinary transitions, respectively. Then the

autocorrelatotd(x, 1) = [ Cy(k,z,z,1)d? 'k/(2m)d1 ~

L. 1
9,C(%, %, 1) = 3[ — 2F + V2 + V3, — V(z,1)

(~@=1425+20)/2 - \We choose the root of to match the 620 ' ’ T Ty ]
e — 0 limit and getA,, = d — 775 5 for special transi- 5.66 - s ]
tion andi,, = d + 2 — ziﬁ 375 for the ordinary one. 51 s ]
We next calculater, exactly in the largen limit. 457} . * .
In this limit, C,(x,x’.z) satisfies Eq. (10) exactly _ ;o[ =, J
except that the potentiaV(z,7) is determined self- ;50348: x N
consistently from V(z,t) = gn + 2) [[G(k,z,z,1) — 2'93 - . * 2 2ol 1]
G(k, o0, o0, oo)]dd:l(k)/(ZW)d*I, where the equal-time L . £ 1o 1]
propagator ofG(k, z, 7', t) satisfies 2391 5 top -« 17
7 / _ 2 2 2 1.84% %0 05 1o 15 20 25 80
0,;G(k,z,z',t) = [-2k* + 07 + 02 — V(z,1) i oS 2% %]
> 1.30 i L I " ! L o !
-V, )]Gk, z,7',t) + 28(z — Z). 0.0 0.5 1.0 1.5 2.0 25 3.0
Log,[t]
(11) _ _ L
In analogy with epsilon expansion, we make the ansatg ©: 1 Xxs(t) is plotted against lo@). The logarithmic

u (u2—1/4) ependence is pretty evident. The inset shows a log-log plot of
V(z,t) = 5 + £—=g[z//t], where g(x) = 1 as  x,(r) vst, which is consistent with a power law.
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