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Nonequilibrium Dynamics following a Quench to the Critical Point in a Semi-infinite System
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We study the nonequilibrium dynamics (purely dissipative and relaxational) in a semi-infinite system
following a quench from the high temperature disordered phase to its critical temperature. We show
that the local autocorrelation near the surface of a semi-infinite system decays algebraically in time
with a new exponent which is different from the bulk. We calculate this new nonequilibrium surface
exponent in several cases, both analytically and numerically.

PACS numbers: 75.10.Hk, 64.60.Cn, 64.60.My, 64.70.Md
n

th

in
th

b

h
io
h
a

b

s

e
s

to
y

h
h
b

e

nal

ce
e
lue
e.

n
h
ce
ulk
he
nce
e
ts
is

y,

ts
are

m-
in
gh

od-
ace
te
le,
e

There has been a lot of current interest in understa
ing the growth of correlations in a system after bein
quenched from the high temperature disordered phase
or below its critical temperaturesTcd [1]. In either case
the system exhibits dynamic scaling at late stage of
growth. The growth is characterized by a single tim
dependent length scale. For quench to belowTc, this
length scale characterizes the linear size of the grow
domains of competing broken symmetry phases. On
other hand, for quench toTc, it characterizes the length
scale over which equilibrium critical properties are esta
lished. A lot of theoretical and experimental efforts hav
been directed in determining the time dependence of t
length scale and the scaling of the equal-time correlat
functions. It was, however, realized later that even t
two-time correlation functions have interesting dynamic
scaling [2,3]. In particular, the autocorrelation function
measuring the memory of the initial conditions retained
the system after timet, decays algebraically with time [2].
This has been verified by exact calculations in a few ca
[4–9], numerical simulations [10] and very recently ex
perimentally [11] for quench toT , Tc, in a liquid crys-
tal system using video microscopy.

In static critical phenomena, it is well known that th
critical behavior near the boundary of a semi-infinite sy
tem is drastically different from the behavior deep insid
the bulk [12–18]. It is therefore natural and important
know whether there are similar modifications in the d
namical behavior near the boundary. In this Letter w
demonstrate, both analytically and numerically, that t
temporal decay of the critical autocorrelations near t
boundary of a semi-infinite system is characterized
new exponents different from that in the bulk.

We consider a semi-infiniteOsnd model in the space
f $x ­ s$r, zdg which extends over infinite space ind 2 1
directions (denoted by$r) and over only positive half-space
in one directionsz $ 0d. The system is assumed to b
translationally invariant in thed 2 1 directions, and this
invariance is broken in thez direction due to the presence
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of a surface atz ­ 0. The model is described by ann
component order parameter field$f ­ ff1, . . . , fng and
a coarse grained Landau-Ginzburg free energy functio
with an additional surface contribution [15],

Fs $fd ­
1
2

Z
dd $xfs= $fd2 1 r0

$f2 1
g
4

s $f2d2

1 cdszd $f2g , (1)
where the integration in Eq. (1) is over the half-spa
z $ 0. The equilibrium properties of this model hav
been studied in detail [14,15]. Depending upon the va
of c, different types of surface orderings take plac
There exists a special valuec ­ cp such that, forc .

cp, the surface orders along with the bulk at bulkTc.
This parasitical transition is called “ordinary” transitio
[14,15]. Forc , cp and in high enough dimensions (suc
that ad 2 1 dimensional surface can order), the surfa
orders first as the temperature is lowered, while the b
is still disordered (“surface” transition) and then as t
temperature is lowered further the bulk orders in prese
of an ordered surface (“extraordinary” transition). Th
valuec ­ cp is a special point where the critical exponen
are different from the ordinary or surface transitions. Th
is called the “special” transition. Within mean field theor
cp ­ 0 but becomes nonzero ford , 4 due to corrections
arising from fluctuations [15]. The critical exponen
associated with these different types of transitions
different from each other and from the bulk values [15].

In this paper, we consider the nonconserved dyna
ics of the order parameter field (model A as in [19])
presence of a surface following a quench from the hi
temperature disorderedsT . Tcd to the bulk critical point
T ­ Tc and ask whether the presence of the surface m
ifies the dynamics near the surface. Far from the surf
one should recover the critical dynamics of a truly infini
system for which several results are known. For examp
it is now well established [20,21] that the bulk equal-tim
correlation function,Gs $x, td ­ kfs$x0, tdfs$x0 1 $x, tdl, ex-
hibits dynamic scaling,Gs $x, td , x2sd221hdgcsssxyjstdddd,
© 1996 The American Physical Society



VOLUME 76, NUMBER 13 P H Y S I C A L R E V I E W L E T T E R S 25 MARCH 1996

or
l

lu

e
],

y

se

in
e

te
d
c

s

is

.

v

t

ia

en

s
he

y

(4)

s

r

r

d)

a-
wheregc is a universal scaling function andjstd , t1yZ

is the time-dependent correlation length.h and Z are
the usual static and dynamic exponents and thek l de-
notes an average over all possible initial conditions (c
responding to the equilibrium distribution at the initia
high temperature) and over the history of time evo
tion. The bulk two-time correlation functionCs$x, td ­
kfs$x0, 0dfs$x0 1 $x, tdl, measuring the correlation with th
initial condition, also exhibits dynamic scaling [12,13
Cs $x, td , fjstdg2lc fcsssxyjstdddd, wherefcs0d is a constant
of Os1d. The exponentlc, characterizing the deca
of the bulk autocorrelation,Abstd ­ kfs$x, 0dfs$x, tdl ,
fjstdg2lc , is a new critical exponent [20,21] in the sen
that no simple scaling relation has been found relating
to other static or dynamic critical exponents. For an
finite system,lc has been calculated analytically for th
Osnd model in the limitn ! ` and also withine expan-
sion wheree ­ 4 2 d (d ­ 4 being the upper critical
dimension) [21]. For the Ising model ind ­ 2 and 3,lc

has been determined numerically [20].
The specific dynamical quantity that we calcula

explicitly in this paper for the semi-infinite system, an
show that it gets drastically modified due to the presen
of the surface, is the decay of the autocorrelationAsz, td ­
kfs$r, z, 0dfs$r, z, tdl with time t. In the limit z ! `, we
recover, as expected, the bulk resultsAs`, td , fjstdg2lb ,
where we denote the bulklc by lb. However, for smallz
near the surface, we find that the autocorrelator decay
Asstd , fjstdg2ls , wherels is a new dynamical surface
exponent different fromlb. Also, the value ofls depends
explicitly on the type of the surface transition. In th
paper, we calculatels analytically withine expansion and
in then ! ` limit for the ordinary and special transitions
Also, we determine the value ofls numerically for the
two-dimensional Ising model.

The model-A dynamics of the order parameter is go
erned by the Langevin equation,

≠ $fy≠t ­ 2dFyd $f 1 $h , (2)

where F is given by Eq. (1), and $hs$x, td is a
Gaussian noise with zero average and a correla
khis $x, tdhjs $x0, t0dl ­ 2kBTdi,jds$x 2 $x0ddst 2 t0d, where
T is the temperature. We first consider the Gauss
theory where one neglects the interaction [setu ­ 0 in
Eq. (1)] and which is valid ford . 4. We define the
Fourier transformationGs $k, z, z0, td ­

R
dd21s$r 2 $r 0d 3

Gs $r 2 $r 0, z, z0, td expfi $k ? s$r 2 $r 0dg, where $k is a
sd 2 1d-dimensional vector in the reciprocal space. Th
from Eq. (2), at the critical point (r0 ­ 0 and setting
kBTc ­ 1), Gs $k, z, z0, td evolves as

≠tGs $k, z, z0, td ­ f22k2 1 ≠2
z 1 ≠2

z 0gGs $k, z, z0, td

1 2dsz 2 z0d , (3)

with the boundary condition≠zG ­ cG at z ­ 0 and
the initial condition Gs $k, z, z0, 0d ­ Ddsz 2 z0d [this
“white noise” form of the initial condition correspond
to quench from the infinite temperature, where t
-

-

it
-

e

as

-

or

n

field fs$x, td is completely random andD controls the
size of initial onsite fluctuations inf]. Similarly, the
symmetrized two-time correlation functionCss $k, z, z0, td
defined as the Fourier transform ofCss$k, z, z0, td ­
1
2 ksfs$r 0, z0, 0dfs$r 0 1 $r, z, td 1 fs$r 0, z, 0dfs$r 0 1 $r , z, tdl
evolves as

≠tCss $k, z, z0, td ­
1
2

f22k2 1 ≠2
z 1 ≠2

z0 gCss $k, z, z0, td ,

(4)
with the same boundary and initial conditions. B
choosing the basis function

csu, zd ­
1

p
2

∑
expsiuzd 2

c 2 iu
c 1 iu

exps2iuzd
∏

, (5)

it is easy to see that the solutions to Eqs. (3) and
are given by Gs $k, z, z0, td ­

R`

2` ducsu, zdcpsu, z0d 3

f1sk, u, td and Css$k, z, z0, td ­
R`

2` ducsu, zdcpsu, z0d 3

f2sk, u, td, where

f1sk, u, td ­ D expf22sk2 1 u2dtg

1
1 2 expf22sk2 1 u2dt

k2 1 u2
, (6)

f2sk, u, td ­ D expf2sk2 1 u2dtg . (7)

Therefore the autocorrelationAsz, td ­
R

Css $k, z, z, td 3

dd21 $kys2pdd21 is given by

Asz, td , t2sd21dy2
Z `

0
du exps2u2td

3
sc sinuz 1 u cosuzd2

c2 1 u2
. (8)

It is clear from Eq. (8) that in the limitz ! ` we
recover the bulk result: for larget, As`, td , fjstdg2d ,
where jstd , t1y2 (Z ­ 2 within Gaussian theory) and
hencelb ­ d. On the other hand, forz ­ 0, we find
that, for large t, As0, td , fjstdg2sd12d for c . 0 and
As0, td , fjstdg2d for c ­ 0. Thus we obtain the result
that for the special transitionsc ­ 0d lsp ­ d while for
the ordinary transitionsc . 0d, lor ­ d 1 2 within the
Gaussian theory. It is interesting to note that whilelb

satisfies the upper boundlb # d conjectured by Fishe
and Huse [2], clearlylor violates this upper bound.

For d , 4, where the interaction term is no longe
irrelevant, we evaluate the exponentlc in e ­ 4 2

d expansion. The two-time correlator (unsymmetrize
Cs $x, $x0, td ­ kfs$x0, 0dfs$x, tdl in real space evolves as

≠tCs $x, $x0, td ­ f2r0 1 =2gCs $x, $x0, td

2
g
n

X
ij

kfis $x0, 0dfis$x, td

3 fjs $x, tdfjs $x, tdl . (9)

At the Wilson-Fisher fixed point,g ­ 8p2eysn 1 8d
to leading order ine [15]. This allows one to calcu-
late the corrections to the two-point correlator pertub
tively in g. To leading order ine, the term proportional
2395
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to g in Eq. (9) can be expressed, using Wick’s the
rem, in terms of the mean-field propagators as2gsn 1

2dG0s $x, $x, tdC0s $x0, $x, td, where G0 and C0 denote the
mean-field equal-time and two-time propagators, resp
tively. To leading order ine, one can replaceC0 in this
term by C, and then Eq. (9) becomes a linear evoluti
equation for the two-time correlator which is correct
Osed. This evolution equation, for the symmetrized co
relatorCss$x, $x0, td, reads

≠tCss $x, $x0, td ­
1
2

f 2 2r̃0 1 =
2
$x 1 =

2
$x0 2 V sz, td

2 V sz0, tdgCss $x, $x0, td , (10)

with r̃0 ­ r0 1 gsn 1 2dG0s`, `, `d, where G0s $x, $x0, td
denotes the mean-field equal-time propagat
The potential V sz, td ­ gsn 1 2d

R
fG0s$k, z, z, td 2

G0s $k, `, `, `dgd3s $kdys2pd3 captures the corrections du
to fluctuations ford , 4 and can be calculated explicitly
For example, at the specialsc ­ 0d and the ordinary
sc ­ `d fixed points, we getVspsx, x, td ­ 2gsn 1

2d f1 1 s2tyz2d exps2z2y2tdgy32p2t and Vor sz, z, td ­
2gsn 1 2d f1 2 s2tyz2d exps2z2y2tdgy32p2t in the
scaling regime wherez ¿ L21, L being the upper
cutoff.

Equation (10) and the form of the potentialV sz, td sug-
gest a late time scaling ansatz for the Fourier transfo
Css $k, z, z0, td ø t2a exps2k2tdffzy

p
t, z0y

p
t g. To deter-

mine the exponenta we first consider the bulk limitz !

`, z0 ! `. Using V s`, `, td ­ 2gsn 1 2dy32p2t and
g ­ 8p2eysn 1 8d in Eq. (10) we geta ­

1
2 2 sn 1

2dey4sn 1 8d andfsx, yd , e2sx2yd2
asx, y ! `. It fol-

lows immediately that the bulk autocorrelationAbstd ,
t2fd2sn12dysn18d sey2dgy2. Since the dynamic exponentZ ­
2 1 Ose2d, we recover the bulk resultlb ­ d 2

n12
n18

e

2 .
For the surface autocorrelator, we need to know
small argument behavior of the scaling functionfsx, yd.
For small x, y, fsx, yd , sxydssa 1 bx2 1 cy2 1 · · ·d
where sss 2 1d ­ 6

n12
n18

e

2 and 6 corresponds to spe
cial and to ordinary transitions, respectively. Then t
autocorrelatorAsx, td ­

R
Css $k, z, z, tddd21kys2pdd21 ,

t2sd2112s12ady2. We choose the root ofs to match the
e ! 0 limit and getlsp ­ d 2

n12
n18

3e

2 for special transi-
tion andlor ­ d 1 2 2

n12
n18

3e

2 for the ordinary one.
We next calculatelc exactly in the largen limit.

In this limit, Css$x, $x0, td satisfies Eq. (10) exactly
except that the potentialV sz, td is determined self-
consistently from V sz, td ­ gsn 1 2d

R
fGs$k, z, z, td 2

Gs $k, `, `, `dgdd21s$kdys2pdd21, where the equal-time
propagator ofGs $k, z, z0, td satisfies
≠tGs $k, z, z0, td ­ f22k2 1 ≠2

z 1 ≠2
z0 2 V sz, td

2 V sz0, tdgGs$k, z, z0, td 1 2dsz 2 z0d .

(11)
In analogy with epsilon expansion, we make the ans

V sz, td ­
a
2t 1

sm221y4d
z2 gfzy

p
t g, where gsxd ! 1 as
2396
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x ! 0 and gsxd ! 0 as x ! `. The values ofa and
m are determined, respectively, from the limitsz ! `

(bulk dynamics) andt ! ` (static limit) and are already
known to bea ­ sd 2 4dy2 [11], msp ­ sd 2 5dy2 and
mor ­ sd 2 3dy2 [15]. The full form of the scaling
function gsxd is to be determined from a complicate
self-consistent equation. However, for the purpose
determining the surface exponentls, it is sufficient
to know that gs0d ­ 1. We then proceed identically
as in the case ofe expansion by assuming a scalin
ansatz forCss$k, z, z0, td. We find a ­ s1 1 ady2 and
sss 2 1d ­ m2 2 1y4. Using the fact thatZ ­ 2 in the
large n limit, we obtain lsp­s5d212dy2 and lor­s5d28dy2.
Note that in the limitz ! ` we recover the bulk result
lb ­ s3d 2 4dy2. These results are consistent wit
those obtained frome expansion after takingn ! ` limit
and also with the mean field results ind ­ 4.

We have also carried out a direct numerical simulati
of the two-dimensional Ising model with open bounda
conditions at the bulk critical temperature using a sp
flop Metropolis algorithm. We measure boundary sp
correlations and compare them with the correspond
bulk measurements done with periodic boundary con
tions. In the static limit, it is well known that the bound
ary spins order only due to the ordering of the bulk spi
(ordinary transition) [13–15]. Since atTc in the static
limit, the boundary correlator falls off with distancer as
1yr (as opposed to the bulk decayr21y4) for larger [22],
it is natural to assume a dynamic scaling form for th
equal-time boundary correlatorGssr , td , r21gsssryjstdddd
at late times. It is believed that even in the presence
a boundary there is still only a single time-dependent c
relation lengthjstd , t1yZ with Z ø 2.15 numerically
[23,24]. The quantityxsstd ­ ksssMsstdddd2l [Msstd being
the total boundary magnetization at timet] is the integral
of the correlation function

R
s drGssr , td on the boundary.

From the scaling form ofGssr, td, xsstd would then grow
logarithmically withjstd (and hence logarithmically with
t). In contrast, the corresponding quantity in the bu

FIG. 1. xsstd is plotted against logstd. The logarithmic
dependence is pretty evident. The inset shows a log-log plo
xbstd vs t, which is consistent with a power law.
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FIG. 2. The autocorrelation on the boundary,Asstd vs time t
in a log-log plot. From the slope we estimate the bounda
exponent ratioloryZ ­ 1.2 6 0.1. The corresponding ratio in
the bulk is estimated to belbyZ ­ 0.74 6 0.02. Bulk data
are shown in the inset.

xbstd ­ ksssMbstdddd2l (Mb being the total bulk magnetiza-
tion), grows algebraically asfjstdg7y4. In Fig. 1 we plot
xsstd and xbstd against logstd and, in the inset, show a
log-log plot of xbstd vs t. Next we compute the au-
tocorrelation on the boundary of the open system a
the periodic bulk system. The two results are contrast
in Fig. 2. The autocorrelation on the boundary deca
much faster, as expected. From the slope of the lo
log plot in Fig. 2 we estimate the boundary exponent r
tio loryZ ­ 1.2 6 0.1. The corresponding ratio in the
bulk is estimated to belbyZ ­ 0.74 6 0.02 in agree-
ment with the previous simulation [20]. UsingZ ø 2.15
(assumingZ retains its bulk value in the boundary a
argued in [23,24]), we estimatelor ø 2.58 6 0.1 to be
contrasted withlb ø 1.59 6 0.02.

We calculate, as a simple extension of [9], these boun
ary autocorrelation exponents exactly, for the dynamics
the X-Y model in two dimensions, following a quench
from one temperature to another, both temperatures
ing below the Kosterlitz-Thouless temperature. We al
have some preliminary results on coarsening in the orde
phase of the Ising model in one and two dimensions whi
seem to indicatels ­ lb at zero temperature. These an
other calculations will be published elsewhere [25].

We thank David Huse and Subir Sachdev for ve
useful discussions. S. M.’s research was funded by N
Grant No. DMR-92-24290.

Note added.—Since this work was submitted, Ritsce
and Czerner [26] pointed out the scaling relationls ­
lb 1 2sbs 2 bbdyn, whereb and n refer to the usual
static exponents, and the subscripts “s” and “b” refer to
surface and bulk, respectively.
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