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The dynamics of a class of aggregation models proposed by Takayasu and co-workers is solved exactly
in one dimension and in the mean field limit. These models describe the aggregation of positive and neg-
ative charges. In one dimension, we find the dynamical cluster-size exponents z =3 and z.=2 when
the average flux of injected charges is nonzero and zero, respectively. We also find the crossover ex-

ponent near the transition to be ¢=%.

Within mean field theory, we find these exponents to be z =2,

ze=1, and ¢ =1. Assuming dynamic scaling, we show that in any dimension, these exponents are related

to one single static exponent.

PACS numbers: 82.20.—w, 05.40.+j, 05.70.Ln, 47.27.—i

The study of irreversible processes evolving to a non-
equilibrium steady state has a long history in statistical
physics. Among these, systems automatically selecting
steady states characterized by power law distributions
have attracted much attention recently under the name of
self-organized criticality [1,2]. A possible example of the
class of self-organized systems is one involving aggrega-
tion. Aggregation is a typical irreversible process where
diffusing particles coalesce on encounter, and has been
studied over many years since the seminal work of Smo-
luchowski [3]. A wide class of aggregation systems are
known to exhibit power law distributions such as the dis-
tribution of cluster sizes at the sol-gel transition point [4],
and the pore size in aerosols [5]. Recently, Takayasu and
co-workers [6] have proposed an aggregation model
where constant injection of particles drives the system
asymptotically into a steady state with power law distri-
bution of particle masses, and thus exhibits self-organized
criticality, as there is no fine tuning parameter in the
model. The (1+1)-dimensional space-time geometry of
this model was shown [7] to be identical to the geometry
of the drainage area in Scheidegger’s river model [8].
The space-time geometry of this model is also equivalent
to the directed Abelian sandpile model [9].

A generalized version of this model was proposed by
Takayasu [10] where the dynamical variables are charges
rather than masses and can have both positive and nega-
tive values. The charge is conserved under aggregation
and the injection process consists of raining charges of
both signs steadily with a certain distribution P(I) of the
injected charge I. The steady state of this model in one
dimension and in the mean field limit was solved exactly
in [10] and was shown to have an interesting transition as
a function of the average charge injected (I), at the sym-
metry point where {I)=0. In one dimension, for {I) >0,
the distribution p(s) of charge s in the steady state was
shown to have an asymptotic one-sided power law tail
p(s)~s ~*3 for large positive s. For (I)=0, the distribu-
tion is symmetric with a power law tail p(s) ~|s| =53,

However, for (I) > 0, the steady state distribution for
negative s has not been studied in detail. Also, not much
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progress has been made in the study of the dynamics.
Recently, Nagatini [11] has studied numerically the dy-
namics of the generalized Takayasu model in one dimen-
sion and suggested a dynamical scaling hypothesis for the
positive charge distribution:

pls,t)~s " f4+(s/t?), s, t>1, 1)

where 7 =% is the exact static exponent and the dynami-
cal cluster-size exponent z =1.48 +0.02 for (I)> 0, and
t.=% and z. =0.75 % 0.02 for {I)=0. He has called the
transition a kinetic growth transition and has found that,
near the transition point, the crossover time f scales as
(I) ~°, where the crossover exponent is 1.21 +0.02 nu-
merically.

In this Letter, we first solve the dynamics of the gen-
eralized Takayasu model in one dimension and also in the
mean field case exactly and show that the dynamical
cluster-size exponents are, respectively, z =% for (I)=0,
and z,=3 for (I)=0 in one dimension, and z=2 and
z.=1 in the mean field limit. Our exact calculation
shows that the crossover exponent ¢ is 5 in one dimen-
sion at variance with Nagatini’s numerical value 1.21
+0.02. We believe that his method of extracting the
crossover exponent may not have been accurate, and sug-
gest a way of obtaining ¢ from the numerical data,
preferable to the one used in [11]. In the mean field case,
we find ¢=1. Finally, we prove quite generally that in
any dimension, assuming dynamic scaling, there is only
one independent exponent 7 and all other exponents are
related to 7 via the scaling relations z=1/(2—1),
t.=2t—1, z.=1/(4—21), and ¢=4—2t. We then
make a dynamic scaling hypothesis for p(s,t) for large
negative s near the critical point. This introduces a new
length scale in the steady state and is consistent with the
above results and also with Nagatini’s simulation [11].

For simplicity, we describe the model in one dimension
[6]. At each site i of a one-dimensional chain, there is at
most one particle with a certain charge S;(n), at discrete
time n. The dynamics is parallel. At each step, every
particle either hops to its right with probability + or
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stays back with probability 4. If more than one particle Z(0,p,t)=1. The large s behavior of p(s,t) will be

happen to be at the same site, they coalesce to a single reflected in the small p behavior of
particle with charge equal to the sum of the individual +oo
charges. Then, a certain charge I;(n) is injected at each Z(,p,t) =f_w p(s,t)explips)ds .

site /. Without loss of generality, we can assume that the
average injected charge (I)=0. The dynamics is repre-
sented by the following stochastic equation:

Sin+1) =X wiS; () +1,(n) | ) Z(,p,t) =1~p*~'Fap'"). @)
J

| The steady state can be analyzed exactly by equating the
where w;; is 0 or 1 with probability 3 if j=ior j=i—1, right-hand side (RHS) of Eq. (3) to zero. The behavior
and w;; =0 if j=i and j=i—1. The distributions of the  of Z(1,p)=Z(l1,p,+ ) for small p was shown to be

In fact, the dynamic scaling for p(s,t) in Eq. (1) will
determine the scaling behavior of Z(1,p,¢) for small p,

injected charge at each site are independent, identical, [7,10]
and time independent. The r-body characteristic function N V3 1/3
Z(r,p,t) =(explipX[=15;()]), in the continuous time ¢, Z(1,p) —1~c{D3p3 for (I)=0
evolves from any given initial condition as [10] ~ I B)p|?3 for (D=0, (5)
8z ripit) = P(p)” (ZG+1.p.0)+Z(r—1.p.1) which immediately gave r =% and .= 3.
ot 4 We now proceed to solve the dynamics. First, we con-
+[2—4d(p) ~1Z(r,p,1)}, 3) sider the case (/) =0. We assume the distribution of / to

) have a finite second moment, and expand ®(p) up to or-
where ®(p) =(e), and with the boundary condition  der p2. We look for solutions of the form Z(r,p,)

I =Z(r,p) +0(r,p)exp(—At), which gives from Eq. (3)
Q(r+1,p)+0(r—1,p) —2[1 =24+ pXI?r(1 =2)1Q(r,p) =0. (6)

Thus, Q(r,p) satisfies the recursion relations for the Bessel functions of both first and second kind [12]. However, since
Z(r,p,t) is bounded for large p, the only acceptable solution is the first kind J,(z). This gives

0(r.p) =ArJ, I ] - 124 )

- ______—____.+
20— T pra—nay

where the eigenvalues A’s are determined by inserting the |
boundary condition Q(0,p) =0 in Eq. (7). We note that This follows from the fact that the total charge is con-

a similar eigenvalue equation was obtained and analyzed served during the aggregation process. Also, (s+)(1)
by Racz [13] in studying the relaxation of homogeneous — (s _)(t) =(|s])(¢) can at most grow linearly in 7. This
density fluctuations in a one-dimensional particles system is due to the fact that {|s|)(¢) can never increase during
with diffusion, annihilation, and steady input of particles. the aggregation process. It can only increase through the
Following a similar analysis, we find that the smallest ei- injection at a steady rate (|7|). These two facts combined
genvalue governing the long time decay is given by together give (s+)(t)~A+1 where A++A_ =) and
l0=0.9279(12)2/3|p|4/3 , (8) A-=<0. Hovyever, if A 1is nonzero, it would imp]y thgt
the average size of the negative clusters would diverge in

where the constant in front of Eq. (8) is 2 _4/3|a||, where the same way as the average positive cluster size in the
ay is the first zero of the Airy function on the negative steady state. Physically, and as found numerically [11],
real axis. Thus, from (4) and (8), we immediately get (s =) must be finite in the steady state as large negative
ze=%. For ()#0, the analysis proceeds exactly the clusters are statistically rare. Thus, (s —)(¢) cannot grow
same way except that the leading term of ®(p) is linear as fast as (s +)(z), demanding that 4 _ be identically zero
in p and the Bessel functions are of complex order and ar- and (s +)(t) ~(s)(¢) ~<{Dt for large . We note that this
gument. However, the zeros of this complex function can argument is valid in any dimension. For (/) =0, from dy-
still be found for large order and argument; the lowest ei- namic scaling (1) (which we have established in one di-
genvalue scales as p?*(I)?3, thus yielding z=7%. The mension), {s4+)(1) ~1*? 77 —1/4 for large ¢. This im-
constants A4,’s in (7) are determined from the initial con- plies that (s+)(¢r) ~¢ g ((1)¢"?) with g(x)~x for large
dition. This general solution thus establishes the scaling x and g(x)— const when x — 0. This immediately gives
hypothesis (4) in one dimension. ¢=7%. In fact, for {(I)=0, by taking successive deriva-
To calculate the crossover exponent ¢, we compute the tives of Eq. (3) with respect to p, and setting p =0, one
moments of the distribution p(s,r). Let us denote can obtain the hierarchy of equations satisfied by the nth
@)= d=sp(s,0)ds and (s-)(t)=f%esp(s,t)ds. derivative Z™(r,0,1). The moments are then deter-

Clearly, for {I)#0, (s4+)+{s-)={(s)~(Dt, for large t. mined by the relation (s")(r)=(—i)"Z"(1,0,1). The
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continuous version (in r) of these equations can be shown
to have a scaling solution. For instance, Z ®(r,0,1) is
found to be of the form 3G (rt ~'/2) where G (u) is relat-
ed to the wave function of the sixth excited state of the
harmonic oscillator and G(u)~(D?u at small u and
G(u)~<(%u? at large u. For (I)=0, one can show
directly from (3) that (s2)(¢) ~¢. Thus, from the scaling
of the second moment also, we find ¢=%. In [11], the
crossover exponent was determined from the ratio of the
second moment to (s 4+, which from our analysis behaves
like 3% for (I)=0, and (I)t*? otherwise, once again
leading to the same value of ¢. Although Nagatini’s
simulations agree well with our exact values z=% and
z.=%, he obtained the value ¢=1.21=%0.02, sig-
nificantly smaller than our result. He determined the
crossover time as the point at which the tangential line of
slope 0.75 and 1.48 intersects, in a log-log plot of
(s3)/{s4)(1). Unfortunately, the scaling regime with
slope 0.75 seems to be reached only for [{I)] <1073, and
the sampling time is too short for [{/)| > 10 73, causing a
systematic inaccuracy in ¢. A more precise determina-
tion of ¢ can be done by directly analyzing the scaling of
the coefficient of %2 as a function of (I). We also find
the general behavior of the nth moment to be 7" ¥ ™%
for (IY =0, and {I)"t*®* 1= otherwise.

We next consider the mean field case where each parti-
cle can hop to any of NV sites with probability 1/N. In this
case, the evolution equation for Z(1,p,t), in the N
— + oo limit, can be directly shown to be

%(l,p,t)=<l>(p)cxp[Z(l,p,t)—l]—Z(l,p,t). ©)

This equation can be easily analyzed in the limit p— 0.
Writing Z(1,p,1) =1—y(p,t), and noting that y(p,t) is
small for small p, we expand the exponential in (9) in
powers of y. Keeping terms only up to order y 2, one easi-
ly finds that the steady state behavior is given by [10]
y(p,+00) ~('"2p172 for (10, and y(p,+00)~([2)1
x |p| for {I)=0, indicating t =% and r.=2. The dy-
namics can be analyzed once again by writing
y(p,t) =y(p,+)+Q(p)exp(—Art), where A is found to
scale as (1)"2p'72 for (I)=0, and as (I%"?|p| for (I) =0,
which thus gives z=2 and z.=1. We find that
(sD=2ZD(1,0,1) scales as {I)%t3 for (I)=0, and as (It
for (I)=0, which immediately gives ¢ =1. This is also
consistent with the fact that (s +)(¢) ~{I)¢ for {I>=0, and
is bounded for (/) =0.

In order to obtain the scaling relations in general di-
mension, we note that even for d > 1, one can define an
r-body generating function Z(r,p,t), although, in gen-
eral, it will depend on the shape of the r-body cluster.
However, it is easy to verify that for independent, identi-
cal, and time-independent injection distributions, the
dependence of Z(r,p,t) on p is only via ®(p). Therefore,
any singular dependence of Z(r,p,t) on p comes only
through the singular dependence of Z(r,p,t) on ®(p).

The difference in the exponents for (/) =0 and (/)0 is a
consequence of the fact that the leading term in ®(p) is
(Dip in the first case, whereas it is —(I%p?/2 in the
latter case. Assuming dynamic scaling in higher dimen-
sions, we immediately get the scaling relations 7,.—1
=2(t —1) and z. =z/2. Note that if ®(p) — 1 ~p with
a#1 and a#2, which can arise if some moments of the
distribution of 7 do not exist, the exponents will explicitly
depend on a, and thus will not be universal. We do not
study further this possibility. Furthermore, for (/) >0,
the average positive cluster size (s4+)(z) behaves like (/)¢
in any dimension, as already noticed. Comparing this
with the scaling hypothesis (1), we immediately get the
third scaling relation (2—t)z=1. Finally, noting that
for 1) =0, (s Y1) ~1%?7" from Eq. (1), and as stated
above that (s +)(¢) ~{I)t for {I) > 0, we get the crossover
exponent ¢ =1/[1—z.(2—7.)]. These four scaling rela-
tions, combined together, give z=1/2—1), t.=27—1,
z.=1/(4—27), and ¢=4—271. These are verified for
the one-dimensional and the mean field cases. Thus,
Nagatini’s conjecture [11] that 2—7.)z. =% is not
true, and fails even for the mean field case.

For (I) > 0, the large negative clusters are statistically
rare and physically one would expect that the steady state
distribution p(s) for large negative s would be cut off by
a length £(CI}). This length should diverge as &E~(I) ™"
at the critical point (/) =0, giving rise to a power law tail.
It then seems reasonable to conjecture a dynamical scal-
ing form for p(s,r), for large negative s, large ¢, and
small {I). A consistent scaling ansatz is

pls,t)~|s| " f=(sl/e®,|s]/€) . (10)

When (I)— 0, (10) is equivalent to (1), as expected,
since p(s,t) is then an even function. For finite positive
(I}, and for large time, the scaling function tends to a
steady state function |s] —t‘f—(0,|s|/§) with finite mo-
ments. This leads to (s —)~¢&> 7. The form (10) also
suggests that the crossover time is 7 =& "% ~(1) ~"*. As-
suming that the crossover times scale identically with {I)
for s >0 and s <0, we get v=z.¢9=1 due to the scaling
relations derived earlier, and it does not depend on the di-
mension. The exponent v derived from the two closest
points to the critical point (among three) from Fig. 1 of
[11] is compatible with our result v=1.

To summarize, we have solved exactly the dynamics of
the generalized Takayasu model in one dimension and in
the mean field limit, and determined the dynamic
cluster-size and crossover exponents. In fact, our general
solution in these cases yields the full dynamic scaling
functions as well. In addition, assuming dynamic scaling
in higher dimensions, we have found the scaling relations
connecting all the exponents to a single steady state ex-
ponent, both for symmetric ({/)=0) and asymmetric
({I)> 0) cases. Finally, consistent with all these results,
we conjecture, for (I) >0, a new dynamic scaling form
for p(s,t) for s <0 near the critical point. This also in-
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troduces a steady state scaling function for s <0, cut off
by a length which diverges at (/)=0. In this respect,
(I?=0 is truly a critical point in the conventional sense.
It would be interesting to check this dynamic scaling for
s <0. Preliminary numerical results seem to confirm this
conjecture [14]. Finally, another important issue would
be to determine the upper critical dimension above which
the mean field exponents are exact. Numerical results in
d =2, 3, and 4 at present are not decisive on this question
l6l.
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Note added. — After this paper was accepted for publi-
cation, it was pointed out to us that some related results
were also obtained by Takayasu et al. [15].

*On leave from Laboratoire de Physique Quantique,
Université Paul Sabatier, 31062 Toulouse Cedex, France.
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