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Abstract We compute analytically the statistics of the Renyi and von Neumann entropies
(standard measures of entanglement), for a random pure state in a large bipartite quantum
system. The full probability distribution is computed by first mapping the problem to a
random matrix model and then using a Coulomb gas method. We identify three different
regimes in the entropy distribution, which correspond to two phase transitions in the asso-
ciated Coulomb gas. The two critical points correspond to sudden changes in the shape of
the Coulomb charge density: the appearance of an integrable singularity at the origin for the
first critical point, and the detachment of the rightmost charge (largest eigenvalue) from the
sea of the other charges at the second critical point. Analytical results are verified by Monte
Carlo numerical simulations. A short account of part of these results appeared recently in
Nadal et al. (Phys. Rev. Lett. 104:110501, 2010).

Keywords Quantum information · Random pure state · Random matrix theory · Entropy

1 Introduction

Entanglement plays a crucial role in quantum information and computation as a measure of
nonclassical correlations between parts of a quantum system [1]. The strength of those quan-
tum correlations is significant in highly entangled states, which are involved and exploited in
powerful communication and computational tasks that are not possible classically. Random
pure states are of special interest as their average entropy is close to its possible maximum
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value [2–4]. Taking a quantum state at random also corresponds to assuming minimal prior
knowledge about the system [5]. Random states can thus be seen as “typical states” to which
an arbitrary time-evolving quantum state may be compared. In addition, random states are
useful in the context of quantum chaotic or nonintegrable systems [6–8].

There exist several measures for quantifying entanglement [9]. For a bipartite quantum
system, the entropy (either the von Neumann or the Renyi entropies) is a well-known mea-
sure of entanglement. For a multipartite system, the full distribution of bipartite entangle-
ment between two parts of the system has been proposed as a measure of multipartite entan-
glement [10, 11]. The distribution of entropy in a bipartite system is thus generally useful
for characterizing entanglement properties of a random pure state.

Statistical properties of observables such as the von Neumann entropy, concurrence, pu-
rity or the minimum eigenvalue for random pure states have been studied extensively [2–4,
12–19]. In particular, the average von Neumann entropy is known to be close to its maxi-
mal value (for a large system). In contrast, few studies have addressed the full distribution
of the entropy: only the distribution of the purity for very small systems [15] and partial
information on the Laplace transform of the purity distribution for large systems [12] have
previously appeared in the literature.

Our purpose here is to focus on the full distribution of the Renyi entropy for a random
pure state in a large bipartite quantum system. Renyi entropy is defined as Sq = 1

1−q
ln�q

where �q = ∑
i λ

q

i and λi ’s are the eigenvalues of the reduced density matrix, the so called
Schmidt coefficients. The parameter 1 ≤ q < ∞ characterizes different measures of entropy.
In the limit q → 1, it corresponds to the von Neumann entropy SVN = −∑

i λi ln(λi), while
for q → ∞, it is given by S∞ = − ln(λmax). For q = 2, it reduces to S2 = − ln(�2) where
�2 = ∑

i λ
2
i is the so called purity. In this paper, we compute analytically the probability

distribution of the Renyi entropy Sq for arbitrary q ∈ [1,∞] for a random pure state. In
particular, we show that the common idea that a random pure state is maximally entangled
is not quite correct: while the average entropy is indeed close to its maximal value [2–4],
the probability of an almost maximally entangled state is in fact vanishingly small. This
statement requires to compute the full probability distribution of the entropy, namely its
large deviation tails, which is one of the goals achieved in our paper.

The calculation of the Renyi entropies’ distribution proceeds by mapping the entangle-
ment problem to an equivalent random matrix model, which describes the statistical prop-
erties of the reduced density matrix of a subsystem. We can then use Coulomb gas methods
borrowed from random matrix theory. We identify three regimes in the distribution of the
entropy, as a direct consequence of two phase transitions in the associated Coulomb gas
problem. One of those transitions is akin to a Bose-Einstein condensation, with one charge
of the Coulomb gas detaching from the sea of the other charges—or equivalently one eigen-
value of the reduced density matrix becoming much larger than the others.

This paper is a detailed version of a short letter that was published recently [20]. It thus
contains all explicit formulas for our results and details about analytical proofs and numeri-
cal simulations that we could not provide in [20] for lack of space. Furthermore, this paper
also contains new results, especially for the third regime of the distribution (see below), the
von Neumann entropy and the maximal eigenvalue of the density matrix.

We note that shortly after our letter [20], another article was published [21], which is
independent and concentrates on the special case of purity, i.e. the case q = 2 of the Renyi
entropy. Results for q = 2 that appear both in [21] and in [20] and here, are in agreement.
Conversely, the nature of the singularities for the distribution itself (considered in [20] and
here) and its Laplace transform (considered in [21] as well as in previous work [12]) is dif-
ferent, thus providing complementary information. Furthermore, in [20] and here, we pro-
vide detailed numerical simulations for q = 2 to test and confirm analytical results. Finally,
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we emphasize that our results, presented below, hold for all q ∈ [1,∞] and that the limiting
cases q → 1 (von Neumann entropy) and q → ∞ (the distribution of the maximum Schmidt
coefficient) are particularly relevant for the physical problem of quantum entanglement.

The plan of the paper is as follows. In Sect. 2, we describe precisely our model of bipartite
quantum system for the direct product HA ⊗ HB of two Hilbert spaces HA and HB . In
Sect. 3, we analyze the distribution of the eigenvalues λi of the reduced density matrices of
the two subsystems. In particular, we compute the average density of eigenvalues and explain
the Coulomb gas method that we also use later for computing the distribution of the Renyi
entropy Sq = 1

1−q
ln�q where �q = ∑

i λ
q

i . In Sect. 4, we compute the full distribution of
�q for a large system. We find two phase transitions in the associated Coulomb gas, and thus
three regimes for the distribution of �q . In Sect. 5, using results from Sect. 4, we derive the
distribution of the Renyi entropy Sq as well as the distribution of the von Neumann entropy
(case q → 1) and the distribution of the largest eigenvalue (q → ∞). Finally in Sect. 6, we
present results obtained by Monte Carlo numerical simulations that we performed to test
and verify our analytical predictions.

2 Random Bipartite State

In this section, we set the problem of bipartite entanglement for a random pure state. We
first describe a bipartite quantum system, introduce then measures of entanglement (the von
Neumann and Renyi entropies) and give finally the precise definition of random pure states.

2.1 Entanglement in a Bipartite Quantum System

Let us consider a bipartite quantum system A ⊗ B composed of two subsystems A and B

of respective dimensions N and M . The system is described by the product Hilbert space
HAB = HA ⊗ HB with N = dim(HA) and M = dim(HB). Here, we shall be interested in
the limit where N and M are large and c = N

M
is fixed. We shall take N ≤ M , i.e. c ≤ 1, so

that A and B play the role of the subsystem of interest and of the environment, respectively.
Let |ψ〉 be a pure state of the full system. Its density matrix ρ = |ψ〉〈ψ | is a positive

semi-definite Hermitian matrix normalized as Trρ = 〈ψ |ψ〉 = 1. The density matrix can
thus be diagonalized, its eigenvalues are non-negative and their sum is unity. Subsystem A

is described by its reduced density matrix ρA = TrB[ρ] = ∑M

αB=1〈αB |ρ|αB〉, where |αB〉 is
an orthonormal basis of HB . Similarly, B is described by ρB = TrA[ρ]. It is easy to show that
the reduced matrices ρA and ρB share the same set of non-negative eigenvalues {λ1, . . . , λN }
with

∑N

i=1 λi = 1.
Any pure state can be written as |ψ〉 = ∑N

i=1

∑M

α=1 xi,α |iA〉 ⊗ |αB〉 where |iA〉 ⊗ |αB〉
is a fixed orthonormal basis of HAB . The singular value decomposition of the matrix xi,α

permits to recast the previous expression in the so-called Schmidt decomposition form:

|ψ〉 =
N∑

i=1

√
λi |mA

i 〉 ⊗ |μB
i 〉 (1)

where |mA
i 〉 and |μB

i 〉 represent the eigenvectors of ρA and ρB , respectively, associated with
the same eigenvalue λi .

The representation (1), namely the Schmidt number nS of strictly positive eigenvalues, is
very useful for characterizing the entanglement between subsystems A and B . For example,
let us consider two limiting cases:
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(i) If only one of the eigenvalues, say λi , is non zero then λi = 1, nS = 1 and the state
of the full system |ψ〉 = |mA

i 〉 ⊗ |μB
i 〉 is a product state, which is said to be separable. The

system is unentangled.
(ii) If all the eigenvalues are equal (λj = 1/N for all j ), nS = N and |ψ〉 is a superposi-

tion of all product states. The system is maximally entangled.
A standard measure of entanglement between two subsystems A and B is the von Neu-

mann entropy of either subsystem: SVN = −Tr[ρA lnρA] = −∑N

i=1 λi lnλi , which reaches
its minimum 0 when the system is unentangled (situation (i) above) and its maximum lnN

when the system is maximally entangled (situation (ii)). Another useful measure of entan-
glement is the Renyi entropy of order q (for q > 0):

Sq = 1

1 − q
ln

[
N∑

i=1

λ
q

i

]

, (2)

which also reaches its minimal value 0 in situation (i) and its maximal value lnN in situ-
ation (ii). As one varies the parameter q , the Renyi entropy interpolates between the von
Neumann entropy (q → 1+) and − lnλmax (q → ∞) where λmax is the largest eigenvalue of
the reduced density matrices.

2.2 Random Pure States

A pure state is called random when it is sampled according to the uniform Haar mea-
sure, which is unitarily invariant. Specifically, a random pure state is defined as |ψ〉 =∑N

i=1

∑M

α=1 xi,α |iA〉 ⊗ |αB〉, where |iA〉 ⊗ |αB〉 is a fixed orthonormal basis of HAB and
where the variables {xi,α} are uniformly distributed among the sets of {xi,α} satisfying the
constraint

∑
i,α |xi,α|2 = 1 (normalization of |ψ〉). Equivalently, the probability density func-

tion (pdf) of the N × M matrix X with entries xi,α can be written

P (X) ∝ δ(Tr(XX†) − 1) ∝ e− β
2 Tr(XX†) δ(Tr(XX†) − 1) , (3)

with the second equality showing that the pdf can also be seen as a Gaussian supplemented
by the unit-trace constraint.

In the basis |iA〉 of HA, the reduced density matrix of subsystem A is simply given by

ρA = XX†. In general, when X is a N ×M Gaussian random matrix, i.e. P (X) ∝ e− β
2 Tr(XX†)

(iid Gaussian entries xi,α that are real for a Dyson index β = 1, complex for β = 2), the
N × N matrix XX† is a Wishart matrix whose distribution of eigenvalues is [22]:

PWishart(λ1, . . . , λN) ∝ e− β
2

∑
i λi

N∏

i=1

λ
β
2 (M−N+1)−1
i

∏

i<j

|λi − λj |β . (4)

The Vandermonde determinant
∏

i<j |λi −λj |β makes that the eigenvalues are strongly cor-
related and they physically tend to repel each other.

The major difference between the matrix ρA = XX† in the quantum problem and a stan-
dard Wishart matrix stems from the unit trace constraint Tr[ρA] = 1. The constraint is to be
included in the distribution of the eigenvalues of ρA, which is given [4, 13] by:

P (λ1, . . . , λN) = BM,N δ
(∑

i

λi − 1
) N∏

i=1

λ
β
2 (M−N+1)−1
i

∏

i<j

|λi − λj |β , (5)
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with β = 2 (the xi,α are complex) and the normalization constant BM,N computed using
Selberg’s integrals [13]:

BM,N = 	(MNβ/2)	(1 + β/2)N

∏N−1
j=0 	((M − j)β/2)	(1 + (N − j)β/2)

. (6)

The presence of a fixed trace constraint (as in (5)) is known to have important consequences
on the spectral properties of a matrix [23–25]. We will see that in the present context also, the
fixed trace constraint does play an important and crucial role. In particular, this constraint is
directly responsible for a Bose-Einstein type condensation transition that will be discussed
in the context of the probability distribution of the entanglement entropy.

Since the eigenvalues λi of ρA are random variables for a random pure state, any
observable is a random variable as well. Statistical properties of observables, namely
of various measures of entanglement such as the von Neumann entropy [4, 26–28], G-
concurrence [14], purity [12, 15] or minimum eigenvalue [16–19], have been studied ex-
tensively. In particular, Page [4] computed the average von Neumann entropy in the limit
M ≥ N � 1: 〈SV N 〉 ≈ lnN − N

2M
. He also conjectured its value for finite N and M (which

was proved later [26–28]). In contrast, there have been few studies on the full distribution
of the entropy, except for the purity �2 = ∑

i λ
2
i whose distribution is known exactly for

small N (2,3 and 4) [15]. For large N , the Laplace transform of the purity distribution
(generating function of the cumulants) was studied recently [12] for positive values of the
Laplace variable. However, when inverted, the previous quantity provides only partial infor-
mation about the purity distribution.

Here, we compute analytically the full distribution of the Renyi entropy Sq (defined
in (2)) or equivalently of �q = ∑N

i=1 λ
q

i = exp [(1 − q)Sq], for large N . As for the von Neu-
mann entropy, the average value of the Renyi entropies is close to their maximal value lnN

(maximal entanglement) : 〈Sq〉 ≈ lnN − z̄(q), where z̄(q) > 0 (for q > 0) is independent
of N for large N . For example, for M ≈ N and q = 2, we have z̄(q = 2) = ln 2. However,
we show below that the probability that Sq approaches its maximal value lnN is again very
small.

3 Distribution of the Eigenvalues of ρA

The eigenvalues of the reduced density matrix ρA are distributed according to the law in (5).
Given this joint distribution, the first natural object to study is the average spectral density
ρN,M(λ) = 1

N

∑N

i=1〈δ(λ − λi)〉. This average density ρN,M(λ)dλ also gives the probability
to find an eigenvalue between λ and λ + dλ (the one-point marginal of the joint distrib-
ution). For finite (N,M), this average density was computed first for β = 2 [29, 30] and
very recently for β = 1 [31]. However, these formulae involve rather complicated special
functions and taking the asymptotic large N , large M limit is nontrivial. Here we take a
complementary route which is well suited to derive exactly the asymptotic limit. We take
the limit N → ∞, M → ∞ but keeping their ratio 0 ≤ c = N/M ≤ 1 fixed. For the spectral
density, we henceforth use a shorthand notation ρN(λ) = ρN,N/c(λ). We obtain easily via a
Coulomb gas approach the limiting form of ρN(λ) for large N .

Due to the unit trace constraint
∑N

i=1 λi = 1, the typical amplitude of the eigenvalues is
λtyp ∼ 1

N
for large N . Since λtyp ∼ 1

N
(and ρN is normalized to unity), we expect (as will be

proved below) that the average density for large N has a scaling form:

ρN(λ) ≈ N ρ∗(λN) . (7)
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Fig. 1 (Color online) The rescaled average density ρ∗(x) of the eigenvalues for the density matrix of a quan-
tum subsystem. The rescaled density is defined by ρN (λ) ≈ N ρ∗(λN) for large N (see (8)) and is plotted
for c = N

M
= 1 (red solid line) and c = 1/3 (blue dashed line). The density is compared with the rescaled

average density of Wishart eigenvalues (random matrix theory): ρ∗
W

(x) defined by ρW
N

(λ) ≈ 1
N

ρ∗
W

( λ
N

) (see

(10)) plotted for c = N
M

= 1 (red solid line) and c = 1/3 (black dotted line). The different dependencies on c

for ρ∗(x) and ρ∗
W

(x) make that, even after their different rescaling in N , the two distributions are equal only
for c = 1

Using the Coulomb gas method (explained in Sect. 4.1), we find an exact expression for
the rescaled density ρ∗(x):

ρ∗(x) = 1

2πcx

√
x − L1

√
L2 − x , (8)

where the right and left edges read L2 = c(

√
1
c

+ 1)2, L1 = c(

√
1
c

− 1)2 and we recall that
c = N/M ≤ 1.

For c = 1 (N ≈ M), L1 = 0, L2 = 4 and the rescaled density reduces to:

ρ∗(x) = 1

2π

√
4 − x

x
. (9)

On the other hand, for Wishart matrices (same distribution of eigenvalues but without the
constraint

∑
i λi = 1), it is known that the average density of the eigenvalues is given, for

large N and fixed c = N/M , by the Marc̆enko-Pastur law [46]:

ρW
N (λ) ≈ 1

N
ρ∗

W

(
λ

N

)

with ρ∗
W(x) = 1

2πx

√
x − LW

1

√
LW

2 − x , (10)

with the right and left edges given by LW
2 = (1 +

√
1
c
)2 and LW

1 = (1 −
√

1
c
)2.

As expected, the scaling with N is different: λW
typ ∼ N for a Wishart eigenvalue, whereas

the unit trace constraint makes that λtyp ∼ 1/N for an eigenvalue of the quantum density
matrix ρA.

For c = 1, the two edges LW
1 = 0, LW

2 = 4 and ρ∗
W(x) = ρ∗(x). However, for a general

c < 1 the rescaled densities are not quite the same (even though they have the same shape):
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Fig. 2 Schematic distribution of �q = ∑
i λ

q
i

= N1−q s as a function of s for (very) large N . Panel (a)

shows the shape of the pdf of �q , while (b) shows the shape of the rate function − lnP(�q = N1−qs). Two
critical points s1(q) and s2(q) separate three regimes I, II and III, characterized by the different optimal
densities shown in Fig. 3. The maximally entangled state s = 1 is at the extreme-left of the distribution, well
spaced from the mean value s̄(q)

ρ∗
W(x) = c ρ∗(xc). In Fig. 1, plots of the rescaled density ρ∗(x) and comparisons to the

shape of the rescaled density for a standard Wishart matrix ρ∗
W(x) are shown for c = 1 and

c = 1/3.

4 Distribution of �q = ∑
i λ

q
i for q > 1 and c = 1

This section is somewhat long as it contains the bulk of the details of our calculations. Hence
it is useful to start with a summary of the main results obtained in Sects. 4.1–4.3 as well as
the main picture that emerges out of these calculations.

In this section, we compute the full distribution of �q = ∑
i λ

q

i , and thus of the Renyi
entropy Sq = ln(�q)/(1 − q) for large N . We take for simplicity M ≈ N , i.e. c = 1, but our
method can be easily extended to c < 1 as well. For simplicity, we will also restrict ourselves
to the case q ≥ 1. However, our method is also easily extendable to the case 0 < q < 1.
Since

∑
i λi = 1 and x → xq is convex for q > 1, we have N1−q ≤ �q ≤ 1 (or equivalently

lnN ≥ Sq ≥ 0). The lower bound �q = N1−q corresponds to the maximally entangled case
(situation (ii) in Sect. 2.1), when λj = 1/N for all j : the entropy is Sq = lnN . The upper
bound �q = 1 corresponds to the unentangled case (situation (i) in Sect. 2.1) when only one
of the λi is non zero (and thus equal to one): the entropy is zero.

The scaling λtyp ∼ 1/N implies that �q ∼ N1−q for large N . Let s ≡ �q Nq−1 be the
rescaled variable s ∼ O(1). In Fig. 2, a typical plot of the probability density function (pdf)
P (�q = N1−q s) is shown: the distribution has a Gaussian peak (centered on the mean
value s = s̄(q)) flanked on both sides by non-Gaussian tails. We show below that there
are two critical values s = s1(q) and s = s2(q) separating three regimes I (1 ≤ s < s1(q)),
II (s1(q) < s < s2(q)) and III (s2(q) < s).

At the first critical point s1(q), the distribution has a weak singularity (discontinuity of
the third derivative). At the second critical point s2(q), a Bose-Einstein type condensation
transition occurs and the distribution changes shape abruptly; the first derivative is discon-
tinuous in the limit N → +∞, this means that this transition is actually a first-order phase
transition. The schematic plot of the distribution of �q (for large N ) in Fig. 2 clearly shows
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Fig. 3 Scheme of the optimal saddle point density ρc of the eigenvalues (or, equivalently, of the Coulomb gas
of charges) for (a) 1 ≤ s < s1(q) (regime I), (b) s1(q) < s < s2(q) (regime II) and (c) s > s2(q) (regime III).
In regime III, the maximal eigenvalue λmax = t becomes much larger than the other eigenvalues, as shown
by the isolated bump in (c)

Fig. 4 Scheme of the effective potential V (x) seen by the charges of the Coulomb gas (eigenvalues) for
(a) 1 ≤ s < s1(q) (regime I), (b) s1(q) < s < s2(q) (regime II) and (c) s > s2(q) (regime III). In regimes I
and II, the charges are confined close to the minimum of the effective potential. In regime III, the potential
is not anymore bounded from below. Therefore, one charge detaches from the sea of the other charges: the
maximal eigenvalue becomes much larger than the other

the three regimes I, II and III and the discontinuity of the derivative at s = s2 (transition
between II and III). These changes are a direct consequence of two phase transitions in the
associated Coulomb gas problem, more precisely in the shape of the optimal charge density.
Figures 4 and 3 show respectively the effective potential seen by the charges and the density
of charges in the three regimes. In particular, in regime III, the potential is not anymore
bounded from below, one charge detaches from the sea of the other charges.

More precisely, the probability density function of �q for large N and q > 1 displays
three different regimes:

P (�q = N1−q s) ≈

⎧
⎪⎨

⎪⎩

exp{−βN2�I(s)} for 1 ≤ s < s1(q) ;
exp{−βN2�II (s)} for s1(q) < s < s2(q) ;
exp{−βN

1+ 1
q �III (s)} for s > s2(q) .

(11)

The exact mathematical meaning of the “≈” sign is a logarithmic equivalence:

− lnP(�q=N1−q s)

βN2 → �I(s) as N → ∞ with fixed s ∈ [1, s1(q)[ (resp. �II for fixed s ∈
]s1(q), s2(q)[) and − lnP(�q=N1−q s)

βN1+1/q → �III (s) as N → ∞ with fixed s > s2(q). The rate
functions �I , �II and �III (as well as s1 and s2) are independent of N—but they depend
on the parameter q . Explicit expressions of the functions �I and �II are given in (32)
and (36) for q = 2, and in (41) for a general q > 1; an explicit expression of �III is given
in (44) for a general q > 1 (and in (45) for q = 2). As shown in Figs. 5 and 6 (resp. for
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N = 50 and N = 1000), we also did some Monte Carlo simulations (as explained in Sect. 6)
and found that our analytical predictions agree very well with the numerical data.

Regime II includes the mean value 〈�q〉 ≈ N1−q s̄(q), i.e. s1(q) < s̄(q) ≤ s2(q) for
every q . The mean value is explicitely given by:

〈�q〉 ≈ N1−q s̄(q) with s̄(q) = 	(q + 1/2)√
π	(q + 2)

4q . (12)

For large N , the distribution of �q given in (11) is highly peaked around its average (because
of the factor N2 in regime II): the average value of �q coincides then with the most probable
value, i.e. s̄(q) is the minimum of �II (s). The quadratic behaviour of �II (s) around this
minimum gives the Gaussian behaviour of the distribution of �q around its average (and
thus gives the variance of �q ). We get:

P (�q = N1−qs) ≈ exp

{

−βN2 (s − s̄(q))2

2σ 2
q

}

for s close to s̄(q). (13)

Therefore, the variance of �q is given by:

Var�q = 〈�2
q〉 − 〈�q〉2 ≈ σ 2

q

βN2q
with σ 2

q = 42q

2π
q(q − 1)2 	(q + 1/2)2

	(q + 2)2
. (14)

The distribution has a Gaussian peak flanked by non-Gaussian tails described by the rate
functions �I (left tail) and �III (right tail). Conversely, the rate function �II describes the
middle part of the distribution, which includes the Gaussian behaviour in the neighbourhood
of the average.

In the limit N → ∞, s1(q) and s2(q) do not depend on N and the second critical value
s2(q) is actually equal to the mean value s̄(q) of s:

s1(q) = 	(q + 3/2)√
π	(q + 2)

(
4(q + 1)

3q

)q

and s2(q) = s̄(q) = 	(q + 1/2)√
π	(q + 2)

4q . (15)

However, for a large but finite N , s2(q,N) actually depends on N and is given in (16) below.
The convergence in N for the regimes I and II is very fast: the agreement between nu-

merical simulations and analytical predictions in the limit N → ∞ is very good already for
N � 50. However, the second transition, between regime II and III, is affected by finite-size
effects, that remain important even for N � O(103). Their main effect is a shift in the value
of the critical point s2. The transition actually occurs at a value s2(q,N) that depends on N ,
is a bit larger than s̄(q) and tends slowly to s̄(q) as N → ∞. More precisely, the second
transition occurs at s = s2(q,N) with

s2(q,N) ≈ s̄(q) + [√q/2 (q − 1) s̄(q)]2q/(2q−1)

N(q−1)/(2q−1)
for large but finite N . (16)

For example, for q = 2, we have s̄(q = 2) = 2 and s2(q = 2,N) ≈ 2 + 24/3

N1/3 − 25/3 lnN

3N2/3 for
large but finite N .

The extreme left of the distribution corresponds to maximally entangled states: s → 1+
means that

∑
i λ

q

i = �q → N1−q , that is the case where all the eigenvalues are equal and
the state is maximally entangled (situation (ii)). As s → 1, �I(s) tends to +∞, thus the
pdf P (�q = N1−qs) tends rapidly towards zero. For example, for q = 2, we have P (�q =
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N1−qs) ≈ (s−1)βN2/4 as s → 1+. This implies that the probability of a maximally entangled
configuration is very small (for large N ).

Similarly, the extreme right s → +∞ of the distribution corresponds to weakly entangled
states. An unentangled state has indeed only one non-zero eigenvalue, λi , thus S = �q = 1
(situation (i)). We can actually compute the expression of the pdf for the scaling �q = S with

S ≈ O(1) (S � s/N ) and 0 < S < 1. For q = 2, we get: P (�2 = S) ≈ (1 − √
S)βN2/2 for

N → ∞ with S ≈ O(1). For S → 1−, the pdf of �q is again tending very rapidly towards
zero: unentangled states are highly unlikely.

4.1 Computation of the pdf of �q : Associated Coulomb Gas

In this subsection, we explain how we compute the pdf (probability density function) of �q

using a Coulomb gas method.
The mapping from random matrix eigenvalues to a Coulomb gas problem is well-known

in random matrix theory [32] and has been recently used in a variety of contexts that include
the distribution of the extreme eigenvalues of Gaussian and Wishart matrices [33–37], purity
partition function in bipartite systems [12], nonintersecting Brownian interfaces [38], quan-
tum transport in chaotic cavities [39, 40], information and communication systems [41], and
the index distribution for Gaussian random fields [42, 43] and Gaussian matrices [44]. Here,
we use similar methods yet the problem is quite different due to the constraint

∑
i λi = 1.

First, the scaling with N (for large N ) differs from standard Wishart matrices. Indeed,
λtyp ∼ 1/N in our problem of entanglement whereas λW

typ ∼ N for a Wishart matrix. How-
ever, the effect of the constraint

∑
i λi = 1 is not just the rescaling of standard Wishart results

by a factor of 1/N2 as it may seem. It turns out that the constraint has more serious conse-
quences and leads to fundamentally different and new behavior (including a condensation
transition which is absent in Wishart matrices) that we will demonstrate.

The pdf of �q is by definition:

P (�q,N) =
∫

P (λ1, . . . , λN) δ

(∑

i

λ
q

i − �q

)(∏

i

dλi

)

. (17)

The joint pdf of the eigenvalues P (λ1, . . . , λN) is given in (5) and can be seen as a Boltz-
mann weight at inverse temperature β:

P (λ1, . . . , λN) ∝ exp{−βE[{λi}]} , (18)

where the energy E[{λi}] = −γ
∑N

i=1 lnλi −∑
i<j ln |λi −λj | (with

∑
i λi = 1) is the effec-

tive energy of a 2D Coulomb gas of charges: the charges repel each other electrostatically
(logarithmic interaction in 2D). For large N , the effective energy is of order E ∼ O(N2)

(because of the logarithmic interaction potential). We can thus compute the multiple inte-
gral in (17) via the method of steepest descent: for large N , the configuration of {λi} which
dominates the integral is the one that minimizes the effective energy.

For (17) we also have to take into account the constraint
∑

i λ
q

i = �q (delta function
in (17)). This will be done by adding in the effective energy a term μ′

2 (
∑

i λ
q

i − �q) where
μ′

2 plays the role of a Lagrange multiplier. Physically, this corresponds to adding an external
potential μ′

2 λq for the charges.
For large N , the eigenvalues are expected to be close to each other and the saddle

point will be highly peaked, i.e. the most probable value and the mean coincide. We will
thus assume that we can label the λi by a continuous average density of states ρ(λ,N) =
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N−1
∑

i〈δ(λ−λi)〉 = N ρ(x) with ρ(x) = N−1
∑

i〈δ(x −λiN)〉 and x = λN . However, we
will see that this assumption is not correct for large �q (large s): in the regime III, the max-
imal eigenvalue becomes much larger than the other eigenvalues. The maximal eigenvalue
should then be treated on its own and be distinguished from the continuous average density.

Let us begin with the case where the eigenvalues can be described by the density ρ(x).
Then the pdf of �q can be written as:

P (�q = N1−q s,N) ∝
∫

D[ρ] exp{−βN2 Es[ρ]} , (19)

where the effective energy Es[ρ] is given by

Es[ρ] = −1

2

∫ ∞

0

∫ ∞

0
dxdx ′ ρ(x)ρ(x ′) ln |x − x ′| + μ0

(∫ ∞

0
dx ρ(x) − 1

)

+ μ1

(∫ ∞

0
dx x ρ(x) − 1

)

+ μ2

(∫ ∞

0
dx xq ρ(x) − s

)

. (20)

The Lagrange multipliers μ0, μ1 and μ2 enforce respectively the constraints
∫

ρ = 1 (nor-
malization of the density),

∑
i λi = 1 (unit trace) and

∑
i λ

q

i = N1−q s (delta function
in (17)).

For large N , the method of steepest descent gives:

P (�q = N1−q s,N) ∝ exp{−βN2Es[ρc]} , (21)

where ρc minimizes the energy (saddle point):

δEs

δρ

∣
∣
∣
ρ=ρc

= 0 . (22)

The saddle point equation reads:

∫ ∞

0
dx ′ ρc(x

′) ln |x − x ′| = μ0 + μ1x + μ2x
q ≡ V (x) , (23)

with V (x) acting as an effective external potential. Differentiating with respect to x gives:

P
∫ ∞

0
dx ′ ρc(x

′)
x − x ′ = μ1 + q μ2x

q−1 = V ′(x) , (24)

where P denotes the Cauchy principal value. This singular integral equation can be solved
by using a theorem due to Tricomi [45] that states that if the solution ρ∗ has a finite support
[L1,L2], then the finite Hilbert transform defined by the equation F(x) = P

∫ L2
L1

dx ′ ρ∗(x′)
x−x′

can be inverted as

ρ∗(x) = 1

π
√

x − L1
√

L2 − x

[

C − P
∫ L2

L1

dx ′

π

√
x ′ − L1

√
L2 − x ′

x − x ′ F(x ′)
]

, (25)

where the constant C fixes the integral of ρ∗ via
∫ L2

L1
dx ρ∗(x) = C. We thus obtain a finite

support density ρc which yields the answer for the regimes I and II.
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In these regimes, the pdf of �q is thus given by P (�q = N1−q s,N) ≈ exp{−βN2�(s)}
where the rate function �(s) is equal to Es[ρc] up to an additive constant. More precisely,
the normalized pdf reads:

P (�q = N1−q s,N) ≈
∫

D[ρ] exp{−βN2 Es[ρ]}
∫

D[ρ] exp{−βN2 E[ρ]} , (26)

where Es[ρ] is given in (20) and E[ρ] is the effective energy associated to the joint distrib-
ution of the eigenvalues (without further constraint, with μ2 = 0). The steepest descent for
both the numerator and denominator gives:

P (�q = N1−q s,N) ≈ exp{−βN2Es[ρc]}
exp{−βN2E[ρ∗]} ≈ exp{−βN2�(s)} , (27)

with �(s) = Es[ρc] − E[ρ∗] and where ρ∗ (resp. ρc) is the density that minimizes E[ρ]
(resp. Es[ρ]). The density ρ∗(x) is thus simply the rescaled average density of states given
in (9) (for c = 1). Finally, we get

�(s) = Es[ρc] − E[ρ∗] = Es[ρc] − 1/4 . (28)

4.2 Regime I and II

Regimes I and II correspond to the case where the eigenvalues can be described by a con-
tinuous density ρ(x), as explained above. In this case, we have seen that the pdf of �q is
given for large N by P (�q = N1−q s,N) ≈ exp{−βN2�(s)}. In this section, we derive an
explicit expression for �(s) = �I(s) in regime I i.e. for 1 ≤ s < s1(q) ((32) in Sect. 4.2.1
for q = 2) and �(s) = �II (s) in regime II i.e. for s1(q) < s < s2(q) ((36) for q = 2 and
(41) for a general q > 1 in Sect. 4.2.2).

4.2.1 Regime I

The solution of (24) is a density with finite support [L1,L2] where L1 ≥ 0. As the density
is expected to be smooth, we must have ρc(L2) = 0 and ρc(L1) = 0 at least for L1 > 0. As
the eigenvalues λi are nonnegative, another possibility is that L1 = 0 and ρc(L1) �= 0 – this
will be regime II. The first case, i.e. with L1 > 0 and ρc(L1) = 0, defines the regime I and
is valid for 1 ≤ s < s1(q) with s1 given in (15), as we shall see shortly.

In this subsection, we show that, for 1 ≤ s < s1(q) (regime I), μ1 < 0 and μ2 > 0,
hence the effective potential V (x) defined in (23) has a minimum at a nonzero x: at

x = x∗ = (
−μ1
q μ2

)
1

q−1 > 0, as shown by Fig. 4(a). The charges concentrate around this nonzero
minimum. Thus the density of charges ρc is expected to have a finite support over [L1,L2]
with L1 > 0 and to vanish at the bounds L1,2 (see Fig. 3(a)).

A Simple Case: q = 2 Let us begin with the case q = 2, where we can find an explicit
expression for the density ρc and the pdf of the purity �2 = ∑

i λ
2
i = Tr[ρ2

A]. As mentioned
in the Introduction, results in this subsection, as well as in subsequent sections dealing with
the special case q = 2, are an extended version of results in [20] and they partially overlap
with those of [21].

We find the solution of (24) for q = 2 by using Tricomi formula with F(x) = V ′(x)

(cf (25)). The solution ρc has a finite support [L1,L2]. By imposing ρc(L1) = 0 = ρc(L2)
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(regime I), we get:

ρc(x) = 2μ2

π

√
x − L1

√
L2 − x . (29)

The optimal charge density is a semi-circle. At this point, there are six unknown parameters:
the constant C in Tricomi’s formula; the bounds of the density support L1 and L2; the
Lagrange multipliers μ0, μ1 and μ2. We also have some constraints to enforce. The two
constraints ρc(L1) = 0 = ρc(L2), together with the three constraints

∫
ρc = 1,

∫
xρc = 1

and
∫

x2ρc = s fix the value of the five parameters C, L1, L2, μ1 and μ2. We get μ0 by
inserting the final expression of ρc in (23) for a special value of x, say x = L2.

By imposing these constraints, we find C = ∫
ρc = 1, L1,2 = 1∓2

√
s − 1, μ1 = − 1

2(s−1)
,

μ2 = 1
4(s−1)

and μ0 = 1
2 ln |s − 1| + 1

4(s−1)
− 1

2 . Therefore we have

ρc(x) =
√

L2 − x
√

x − L1

2π (s − 1)
, (30)

with L1,2 = 1 ∓ 2
√

s − 1. This solution is valid for L1 > 0, i.e. for s < 5/4. Thus, regime I
corresponds to 1 ≤ s < s1(2) with s1(2) = 5/4.

In this regime, we have μ1 = − 1
2(s−1)

< 0, μ2 = 1
4(s−1)

> 0, and the effective potential

V (x) = μ0 + μ1x + μ2x
2 has a minimum for x = x∗ = 1 > 0. The charges concentrate

around this minimum: they form a semi-disk centered at x∗ = 1 = (L1 + L2)/2. The radius
of the semi-disk R = 2

√
s − 1 increases with s till L1 reaches its minimal possible value 0

(for s = 5/4).
Finally we compute the saddle point energy. Using the saddle point equation ( (23)),

we get Es[ρc] = − 1
2 (μ0 + μ1 + μ2s) = − 1

4 ln(s − 1) + 1
8 , which gives the expression of

�I(s) = Es[ρc] − E[ρ∗] = Es[ρc] − 1
4 (see (28)). The distribution of the purity �2 is thus

given by:

P (�2 = s/N,N) ∝ exp{−βN2�I(s)} , (31)

where the large deviation function �I is explicitly given by:

�I(s) = −1

4
ln(s − 1) − 1

8
. (32)

General Case: q > 1 The same qualitative behaviour holds for a general q > 1: in the
regime I, the effective potential V (x) has a minimum at a nonzero x = x∗ > 0, the charges
accumulate around this minimum. The density ρc has a finite support [L1,L2] with L1 > 0
and ρc(L1) = 0 = ρc(L2). This regime is valid for 1 ≤ s ≤ s1(q). The value of the critical
point is determined from the analysis of regime II: we show that regime II is valid for
s > s1(q). Unfortunately, we were not able to obtain explicit expressions for ρc and �I in
regime I for general q (the integral in the Tricomi formula for a general q seems hard to
compute analytically).

4.2.2 Regime II

As s approaches s1(q) from below, the lower bound L1 of the density support tends to zero.
As the eigenvalues are non-negative, L1 cannot be negative. Hence, regime I does not exist
for s > s1(q). The critical value s1(q) is the onset of regime II, where the density ρc has a
finite support ]0,L] and vanishes only at the upper bound L (see Fig. 3(b)). We will see that
regime II is valid for s1(q) ≤ s ≤ s2(q,N) where s2(q,N) is given in (16).
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Within regime II and for increasing s, μ1 increases and becomes positive while μ2

remains positive. The effective potential V (x) = μ0 + μ1x + μ2x
q has thus a minimum

at a smaller and smaller value x = x∗ that sticks to zero when μ1 becomes positive (see
Fig. 4(b)). The charges concentrate close to the origin.

A Simple Case: q = 2 We find the solution of (24) for q = 2 by using again the Tricomi
formula with F(x) = V ′(x) (cf. (25)). We are looking for a solution ρc with finite support
[0,L]. After imposing ρc(L) = 0, we get:

ρc(x) = 1

π

√
L − x

x
[A + Bx] , (33)

with A = μ1 + μ2L and B = 2μ2.
There are five unknown parameters: the arbitrary constant C in Tricomi’s formula; the

upper bound of the density support L; the Lagrange multipliers μ0, μ1 and μ2. We also have
constraints to enforce. The constraint ρc(L) = 0 together with the three constraints

∫
ρc = 1,∫

xρc = 1 and
∫

x2ρc = s fix the value of the four parameters C, L, μ1 and μ2. We get μ0

by inserting the final expression of ρc in (23) for a special value of x, say x = L.
We find C = ∫

ρc = 1, μ1 = 8(L−3)/L2, μ2 = 4(4−L)/L3 and μ0 = ln(L
4 )− 1

2 −μ1
L
4 .

The upper bound of the support L is solution of the equation L2 − 12L + 16s = 0. Hence
L = 2(3 ± √

9 − 4s). Physically the density ρc(x) must remain positive for 0 < x < L. It is
not difficult to see that this determines L:

L = L(s) = 2(3 − √
9 − 4s) (34)

The upper bound L increases with s and matches smoothly regime I: L = 2 = L2 at s =
s1(2) = 5/4. The solution of regime II, exists as long as s < 9/4. However, we shall see
that there exists another solution for s > 2 that is energetically more favorable. This latter
solution will yield regime III. The solution of regime II is thus valid only for 5/4 < s < 2.

We have seen that μ1 = 8(L−3)/L2 and μ2 = 4(4−L)/L3. According to the respective
sign of μ1 and μ2, we distinguish three phases for the effective potential V (x) = μ0 +μ1x +
μ2x

2:

– 2 ≤ L < 3 (i.e. 5/4 ≤ s < 27/16): μ1 < 0 and μ2 > 0. The potential V (x) has a minimum
at a positive x = x∗ = (−μ1)/(2μ2) = L(3 − L)/(4 − L) (as in regime I). x∗ decreases
when L (or s) increases and reaches 0 at L = 3 (see Fig. 4(a)).

– 3 < L < 4 (i.e. 27/16 < s < 2): μ1 > 0 and μ2 > 0. The potential is monotonic (increas-
ing) on the real positive axis. It has an absolute minimum at x = 0 (see Fig. 4(b)).

– L > 4 (i.e. 2 < s ≤ 9/4): μ1 > 0 but μ2 < 0. The potential is not anymore bounded from
below. It increases around the origin, reaches a maximum at x = x∗ = (μ1)/(−2μ2) =
L(L − 3)/(L − 4) and decreases monotonically for x > x∗ to −∞ (see Fig. 4(c)). In
this phase, the origin is a local minimum and the solution in (33) is metastable. There
is actually a second solution in this phase, where one eigenvalue splits off the sea of the
other eigenvalues. This second solution becomes energetically more favorable at s = s2 ≈
2 + 24/3

N1/3 . The solution of regime II in (33) is thus valid only for s < s2. For s > s2, the
second solution dominates: this is regime III.

Finally, the distribution of the purity �2 in regime II is computed by the saddle point
method:

P (�2 = s/N,N) ∝ exp{−βN2�II (s)} , (35)
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Fig. 5 (Color online) Distribution of �2 = ∑
i λ2

i
: the figure shows the rate function �(s) = − lnP(�2= s

N
)

βN2

plotted against s for N = 50. Analytical predictions (red solid line) are compared with the results (blue
points) of Monte Carlo numerical simulations (method 1, as explained in Sect. 6). Our analytical predictions
consist of three regimes. For regimes I (1 ≤ s < 5/4) and II (5/4 < s < 2), we have plotted the asymptotic
expressions of the rate functions in the limit N → ∞ given in (32) and (36). For regime III, we have plotted
the analytical prediction for large but finite N , using for �III (s,N) = �(N, s/N) (see (51)) the complete
expression of E given in (55) and ζ and t (numerical) solutions of (53) and (54). Indeed, for N = 50, finite-N
corrections to the asymptotic formula in (45) are important in regime III: the curve of the dominant behavior
in N would not fit well the data and the complete expressions are needed. Note in particular that finite-N
effects make that the transition between II and III is regularized and appears to be smooth

where the large deviation function �II = Es[ρc]− 1
4 = − 1

2 [μ1 +μ2s+μ0]− 1
4 is explicitely

given by:

�II (s) = −1

2
ln

(
L

4

)

+ 6

L2
− 5

L
+ 7

8
, (36)

with L = 2(3 − √
9 − 4s). For large N , this solution is valid for s1(2) < s ≤ s2(2,N) with

s1(2) = 5/4 and s2(2,N) ≈ 2 + 24/3

N1/3 → 2 as N → +∞ (as we shall see).
At s = s1 = 5/4 (transition between regime I and II), the rate function �(s) has

a weak nonanalyticity. It is continuous, �(5/4) = − 1
8 + ln 2

2 , and even twice differen-

tiable: d�
ds

|s=5/4 = −1 and d2�

ds2 |s=5/4 = 4. However, the third derivative is discontinuous:
d3�

ds3 |s=5/4− = d3�I

ds3 |s=5/4 = −32 but d3�

ds3 |s=5/4+ = d3�II

ds3 |s=5/4 = −16.
For q = 2, the authors of [21] studied the Laplace transform of the purity distribution

and as a function of their Laplace parameter β , they found a second-order phase transition
at β = 2. When translated into the real space, as a function of the purity itself, this corre-
sponds exactly to the transition we mentioned above at s = 5/4 and reported originally in
our letter [20]. Interestingly, however, as a function of s, the distribution of purity has a 3-rd
order transition at s = 5/4 (as shown by the discontinuity in the third derivative of the rate
function �(s)). On the other hand, in the Laplace space, this corresponds to a second order
phase transition [20]. Thus, this is nice example of the fact that the usual ensemble equiva-
lence breaks down due to the presence of long range Coulomb interaction in the system.

The minimum of � is reached at s = 2 within regime II, which gives the mean value of
the purity 〈�2〉 ≈ 2/N (as the distribution is highly peaked around its average for large N ).

Figure 5 compares our analytical predictions for regimes I and II in (32) and (36) with
numerical data (Monte Carlo simulations): the agreement is very good already for N = 50.
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General Case: q > 1 We find the solution ρc with finite support [0,L] of (24) for q > 1 by
using again the Tricomi formula with F(x) = V ′(x) (cf. (25)). After imposing ρc(L) = 0,
we get the expression of the density:

ρc = μ1

π

√
L − x

x
+ 2μ2qLq−1

π3/2

	(q + 1
2 )

	(q)

√
L − x

x
2F1

(

1,1 − q,
3

2
,1 − x

L

)

, (37)

where 2F1 is a hypergeometric function 2F1(a, b, c, z) = ∑∞
n=0

(a)n(b)n
(c)n

zn

n! , with (a)n =
a(a + 1) · · · (a + n − 1) denoting the raising factorial (Pochhammer symbol).

Exactly as for q = 2, the constraints fix the unknown parameters. We obtain the Lagrange
multipliers μ1, μ2 and μ0 as functions of L:

μ1 = 8(1 + q)

(1 − q)L2
− 4q

L(1 − q)
and μ2 = (1 + q)

(1 − q)

√
π 	(q)

	(q + 1/2)

L − 4

Lq+1
. (38)

and μ0 = ln(L
4 ) + μ1

L(1−q)

2q
− 1

q
. The upper bound L (which is a function of s) is given by

the solution of the equation

(
1 − q

1 + q

)

Lq + 4Lq−1 = 2
√

π 	(q + 1)

	(q + 1/2)
s . (39)

For q = 2, we recover the simple expressions of the previous subsection.
The function f : L → (

1−q

1+q
)Lq + 4Lq−1 is increasing with L for 0 < L < L0 with L0 =

4(1 + q)/q , and decreases for L > L0. It is thus maximal at L = L0, which implies that s

cannot be larger than s0 = s(L = L0) in this regime. Hence, regime II is not valid for s > s0,
where s0 = s0(q) = s(L = L0) = 	(q+1/2)

2
√

π	(q+2)
(

4(1+q)

q
)q .

Moreover, it can be shown that, for L < L0/3 and for L > L0, the density ρc(x) becomes
negative for x close to the bounds (close to 0 for L < L0/3, close to L for L > L0). This is
not physical. Hence, L must belong to the interval [L0/3,L0]. Within this range, the function
f is monotonic and it increases with L. It can thus be inverted and gives L as a single-valued
function of s: L = L(s). This range [L0/3,L0] corresponds to s1(q) ≤ s ≤ s0(q), where
s1(q) = s(L = L0/3) and s0 = s(L = L0).

Therefore regime II can exist only for s1(q) ≤ s ≤ s0(q), where s1(q) = 	(q+3/2)√
π	(q+2)

×
(

4(1+q)

3q
)q and s0(q) = 	(q+1/2)

2
√

π	(q+2)
(

4(1+q)

q
)q . For q = 2, we recover s1(2) = 5/4 and s0(2) =

9/4. However, as in the q = 2 case, this regime is not valid anymore for s > s2(q,N) given
in (16), where a second solution starts to dominate (regime III).

Finally, we compute the pdf of �q as a function of L = L(s). We get the pdf by the
saddle point method:

P (�q = N1−q s,N) ∝ exp{−βN2�II (s)} , (40)

where the large deviation function �II = Es[ρc] − 1
4 is explicitely given by:

�II (s) = −1

2
ln

(
L

4

)

+ 4(1 + q)

qL2
− 2(1 + 2q)

qL
+ 3q + 1

4q
. (41)

The function L = L(s) is the unique solution of (39) within the range s1 ≤ s ≤ s2.
Exactly as for q = 2, the parameter μ2 (given in (38)) is positive for L < 4 (s < s̄(q)) and

becomes negative for L > 4 (s > s̄(q)). Hence, for all q > 1 the effective potential V (x) =
μ0 +μ1x+μ2x

q becomes unbounded from below when L exceeds 4. The solution of regime
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II is thus metastable in the range s̄(q) < s < s0(q) (4 < L < L0). Indeed, exactly as for
q = 2, there exists a second solution for s > s̄(q) that becomes energetically more favorable
(lower energy) for s > s2(q). This is the onset of regime III. It occurs at s = s2 = s̄ for very
large N , more precisely at s = s2(q,N) ≈ s̄(q)+[√q/2 (q − 1) s̄(q)]2q/(2q−1)/N(q−1)/(2q−1)

for large but finite N , as we shall see.
As the distribution of �q is highly peaked for large N , its mean value is given by the most

probable value: 〈�q〉 = N1−q s̄(q) where s̄(q) minimizes �(s). This minimum s = s̄(q) =
	(q+1/2)√
π	(q+2)

4q (or equivalently L(s̄) = 4) is reached within regime II and �II (s̄(q)) = 0. For s

close to s̄(q), �II (s) ≈ (s−s̄(q))2

2σ 2
q

where σ 2
q is given in (14). We conclude that the distribution

of �q has a Gaussian behaviour around its average, as shown in (13), from which we can
read the variance (see (14)). For example, for q = 2, we have σ 2

2 = 4 and Var�2 ≈ 4
βN4 .

4.3 Regime III

As s exceeds s̄(q), μ2 becomes negative and the effective potential V (x) = μ0 +μ1x+μ2x
q

is not anymore bounded from below. The solution of regime II becomes metastable. The
minimum of the potential at the origin still exists, as V (x) increases for small x, but it is
a local minimum: V (x) reaches a maximum at x = x∗ > 0 and then decreases to −∞ (see
Fig. 4(c)). Actually, for s > s̄(q), there exists another solution where one charge splits off
the sea of the other (N − 1) charges that remain confined close to the origin (in the local
minimum of V ). The maximal eigenvalue (charge) becomes much larger than the other (see
Fig. 3(c)). At some point s = s2(q,N) very close to s̄(q) for large N , this second solution
becomes energetically more favorable than the solution of regime II: this is the onset of
regime III. This phase transition occurs at s = s2(q,N) given in (42). It is reminiscent of
the real-space condensation phenomenon observed in a class of lattice models for mass
transport, where a single lattice site carries a thermodynamically large mass [47, 48].

4.3.1 Regime III: Summary of Results

We show in this section that there is an abrupt transition from regime II to III at s = s2(q,N)

where:

s2(q,N) ≈ s̄(q) + [√q/2 (q − 1) s̄(q)]2q/(2q−1)

N(q−1)/(2q−1)
for large N . (42)

Here, s̄(q) the mean value of s given in (12). The maximal eigenvalue t suddenly jumps
from a value t ≈ T/N very close to the upper edge ζ of the sea of eigenvalues to a value t ≈
[s − s̄(q)]1/q/N

1− 1
q much larger than the other eigenvalues (t � ζ ) (see Fig. 3(c)). This is

clearly shown by the good agreement between our predictions and numerical simulations in
Fig. 7 for N = 500 and N = 1000. The consequence of this phase transition in the Coulomb
gas is an abrupt change in the distribution of �q . More precisely, we show that for large N :

P (�q = N1−q s,N) ≈ exp
{−βN

1+ 1
q �III (s)

}
for s > s2(q,N) , (43)

where

�III (s) = [s − s̄(q)]1/q

2
. (44)
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The expression of the mean value s̄(q) is given in (12). For example, for q = 2, this implies:

P

(

�2 = s

N
,N

)

≈ exp
{−βN

3
2 �III (s)

}
with �III (s) =

√
s − 2

2
. (45)

The rate function �(N, s/N) defined by

N2 �(N, s/N) =
{

N2 �II (s) for s < s2 ,

N
1+ 1

q �III (s) for s > s2 ,
(46)

is continuous but its derivative is discontinuous at s = s2: for large N we have d�
ds

|s+
2

≈
d�
ds

|s−
2
/(2q). At the transition point s = s2, there is also a change of concavity of the curve:

the rate function in regime II is convex ( d2�II

ds2 > 0 for s < s2) and has a minimum at s = s̄,

whereas the rate function in regime III is concave ( d2�III

ds2 < 0 for s > s2).
Figure 6 shows the transition from regime II to regime III for q = 2 and N = 1000: ana-

lytical prediction for large N in (45) compare well with Monte Carlo numerical simulations.

4.3.2 New Saddle Point

We want to describe the regime where a single charge (the maximal eigenvalue) detaches
from the continuum of the other charges. The assumption that all the eigenvalues are close
to each other and can be described by a continuous density of states does not hold anymore.
The saddle point must be slightly revised.

We write λmax = t and label the remaining (N − 1) eigenvalues by a continuous density
ρ(λ) = 1

N−1

∑
i �=max δ(λ − λi). Physically, as the effective potential has a local minimum at

the origin x = 0, we expect the optimal charge density ρc to have a finite support over [0, ζ ]
with ζ < t and ρc(ζ ) = 0: while one charge (the maximal eigenvalue t ) splits off the sea, the
other charges (the sea) remain confined close to the origin (in the local minimum of V , see
Fig. 4(c)).

In this regime, we do not rescale the density (and the energy) by assuming that λ ∼
1/N . We want indeed to compute the pdf of �q = S for all S̄(q) ≤ S ≤ 1, where S̄(q) =
N1−q s̄(q). The effective energy is now a function of both t and ρ:

ES[ρ, t] = − (N − 1)2

2

∫ ζ

0

∫ ζ

0
dλdλ′ ρ(λ)ρ(λ′) ln |λ − λ′|

− (N − 1)

∫ ζ

0
dλ ρ(λ) ln |t − λ| + μ0

(∫ ζ

0
dλ ρ(λ) − 1

)

+ μ1

(

(N − 1)

∫ ζ

0
dλ λ ρ(λ) + t − 1

)

+ μ2

(

(N − 1)

∫ ζ

0
dλ λq ρ(λ) + tq − S

)

. (47)

The dominating configuration is described by the optimal charge density ρc and the op-
timal value tc of t = λmax such that:

δES

δρ

∣
∣
∣
ρ=ρc,t=tc

= 0 and
∂ES

∂t

∣
∣
∣
ρ=ρc,t=tc

= 0 . (48)
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Taking into account the normalization, we have indeed for large N : P (�q = S,N) ≈
∫

Dρ
∫

dt e−βES [ρ,t]
∫

Dρ
∫

dt e−βE[ρ,t] ≈ exp{−β(ES[ρc, tc] − E[ρ∗, t∗])}, where ES[ρ, t] is given in (47) and

E[ρ, t] has the same expression as ES[ρ, t] but without the last term (the constraint∑
i λ

q

i = S). The pair (ρ∗, t∗) (resp. (ρc, tc)) minimizes E[ρ, t] (resp. ES[ρ, t]). In fact,
the normalization is given by the saddle point energy evaluated at S = S̄ (the mean value
of S): E[ρ∗, t∗] = ES[ρc, tc]|S=S̄ (with S̄ = 2/N for q = 2). We shall see that for large N ,
we have:

E[ρ∗, t∗] = ES[ρc, tc]
∣
∣
S=S̄

≈ N2

(
lnN

2
+ 1

4

)

. (49)

Formally, by analogy with regimes I and II, we can write:

P (�q = S,N) ≈ exp{−βN2�(N,S)} , (50)

where we define the rate function � as

�(N,S) = (ES[ρc, tc] − E[ρ∗, t∗])/N2 . (51)

However, we shall see that the scaling of � with N is different in regime III with re-
spect to the regimes I and II. In regimes I and II, � was independent of N for large
N : �(N, s/N) → �I(s) (resp. �II (s)). In regime III, we shall see that: �(N, s/N) ≈
�III (s)/N

1− 1
q for large N .

For simplicity, we write t instead of tc in the following.

4.3.3 Case q = 2

Following the same steps as for regime II, we find that the optimal charge density is explic-
itly given for q = 2 by:

ρc(λ) = 1

π (N − 1)

√
ζ − λ

λ

[

A + Bλ + C

t − λ

]

, (52)

with A = 4
ζ 2 [Nζ − 2 + 2

√
t (t − ζ )] , B = 8

ζ 3 [4 − Nζ +
√

t
t−ζ

(3ζ − 4t)] and C =
√

t
t−ζ

,

where ζ and t = tc satisfy:

(a) 16S + Nζ 2 − 12ζ −
√

t

t − ζ
(16t2 − 20tζ + 5ζ 2) = 0 , (53)

(b) (8t2 − 8tζ + ζ 2)2 = 8(t − ζ )
√

t (t − ζ )(8t − 2ζ − 2Ntζ + Nζ 2) . (54)

These equations can be solved numerically for every �2 = S. We can also find the solutions
analytically for very large N .

For S = s
N

with 2 < s < 9/4, there exist two solutions for the pair (ζ, t). The first solution
is of the form t ≈ ζ with ζ ≈ O(1/N). This is exactly (to leading order in N ) the solution
of regime II (see below, “first solution”). There is also a second solution, where t � ζ :
the maximal eigenvalue becomes much larger than the other eigenvalues. More precisely,
ζ ≈ O(1/N) whereas t ≈ O(1/

√
N) for S ≈ O(1/N) (see below, “second solution”). We

shall see that the first solution (regime II) is valid up to a value s = s2 ≈ 2 + 24/3

N1/3 for large
N , whereas the solution with t � ζ starts to dominate for s > s2 (its energy becomes lower):
this is regime III.
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For S > 9
4N

(s > 9
4 ), there remains only one solution (the second one), where ζ = L/N

and t � ζ .
Note that in both cases, for large N (and for 2

N
≤ S < 1), the upper bound ζ remains

of the order ∼ O(1/N). We shall thus write ζ = L
N

with L ∼ O(1). On the other hand, the
maximal eigenvalue t scales from O(1/N) (as S → 2/N ) to O(1) (as S → 1−).

Finally, we compute the saddle point energy as a function of ζ = L/N and t . As finite-
size effects (large but finite N ) are important in this regime, we keep all terms up to order
O(N) in the saddle point energy, which gives:

ES[ρc, t] = E(ζ, t) = − (N − 1)2

2
ln

[
ζ

4

]

− 2N ln

[√
t + √

t − ζ

2

]

+ 1

2
ln[t (t − ζ )]

+ 9N2

8
+ 6(1 + t2)

ζ 2
− 5(N + t)

ζ
+ t

8(t − ζ )

+
√

t

t − ζ

[

−19N

4
− 12t

ζ 2
+ 11

ζ
+ 5Nt

ζ

]

, (55)

where ζ = ζ(s) and t = tc = t (s) are given by (53) and (54).
The rate function is thus given by �(N,S) = (ES[ρc, t] − E[ρ∗, t∗])/N2 = (E[ζ, t] −

E[ρ∗, t∗])/N2 with E[ζ, t] given in (55).

Scaling S = s/N with s ∼ O(1): First Solution t ≈ ζ with ζ ∼ O(1/N) (Regime II) For
S = s

N
with s ∼ O(1) for large N , the solution of regime II still exists as long as s < 9/4

(where 9/4 = s0(2)). We recover this solution from the (53) and (54) with the scaling t = T
N

and ζ = L
N

with T ≈ L ∼ O(1), i.e. the maximal eigenvalue t remains very close to the
other eigenvalues (t ≈ ζ for large N ).

In this limit, equations (53) and (54) indeed give:

(a) 16s + L2 − 12L ≈ 0 , (56)

(b) (T − L)3/2 ≈ L5/2

8(6 − L)

1

N
. (57)

Equation (a) is the same as (39) of regime II. To leading order in N (order N2), (55) reduces
to:

ES[ρc, t] = E(L, t) = −N2

2
ln

(
L

4

)

+ 6
N2

L2
− 5

N2

L
+ N2

(
lnN

2
+ 9

8

)

. (58)

Therefore, using (49), we get �(N, s/N) = (ES[ρc, t] − ES[ρc, t]|s=2)/N
2 = �(s) with

�(s) = − 1
2 ln(L

4 ) + 6
L2 − 5

L
+ 7

8 = �II (s). We recover the expression in (36) of regime II.
However, for S = s/N > 2/N there exists a second solution that becomes energetically

more favorable at some point s2 ≈ 2 + 24/3

N1/3 . Therefore regime II is only valid for 5/4 <

s < s2.

Scaling S = s/N with s ∼ O(1): Second Solution t � ζ (Regime III) For S = s/N with
s > 2, there exists a second solution where one eigenvalue (λmax = t ) becomes much larger
than the others : t � ζ . In this limit, (53) and (54) give for large N :

t ≈
√

s − 2√
N

and ζ ≈ 4

N

[

1 + 3 − s√
s − 2

1√
N

]

. (59)
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Fig. 6 (Color online) Distribution of �2 : rate function � = − lnP [�2 = s/N ]/(βN2) plotted against s

for N = 1000. Analytical results (solid line) are compared with data (red points) of numerical simulations
(Monte Carlo, method 2, see Sect. 6). Analytical results here are the rate functions expected in the limit of
very large N : �II (s) in regime II (green solid line, see (36)) and �(N, s/N) ≈ �III (s)/

√
N in regime III

(blue solid line, see (45)). The transition between regimes II and III is abrupt, we can see the discontinuity

of the derivative of the rate function. It occurs at s2(q = 2,N) ≈ 2 + 24/3

N1/3 − 25/3 lnN

3N2/3 ≈ 2.18 for N = 1000

For S → 1, which implies s → ∞ as N → ∞, we find t ≈ √
s
N

= √
S and ζ ≈ 4

N
(1 −

√
s
N

) ≈ 4
N

(1 − t) as also recovered in (64).
We can expand the saddle point energy in (55) replacing t and ζ by the expressions given

in (59) for large N . We obtain:

ES[ρc, t] ≈
√

s − 2

2
N3/2 + N2

(
lnN

2
+ 1

4

)

− N

2
lnN + O(N) for large N . (60)

Finally, we get N2�(N, s/N) = Es/N [ρc, t]−N2( lnN
2 + 1

4 ) ≈
√

s−2
2 N3/2 − N

2 lnN +O(N)

for large N (see (49)) and the pdf of �2 is thus given for large N by:

P

(

�2 = s

N
,N

)

≈ e−βN3/2�III (s) , (61)

where N3/2�III (s) = N2�(N, s/N), that is

�III (s) =
√

s − 2

2
− lnN

2
√

N
+ O

(
1√
N

)

≈
√

s − 2

2
for large N . (62)

The rate function has a very different behaviour for large N in regime II and III. In
regime I and II, we have P (�2 = s

N
,N) ≈ e−βN2�(s), whereas in regime III we have

P (�2 = s
N

,N) ≈ e−βN3/2�III (s). For large but finite N and for s > 2 but very close to s̄ = 2,
we have N3/2�III (s) > N2�II (s). Therefore the solution of regime II dominates close to
s = 2. However, the solution of regime III becomes energetically more favorable at some
point s2 defined by N3/2�III (s2) = N2�II (s2), that is

s2 ≈ 2 + 24/3

N1/3
− 25/3 lnN

3N2/3
for large N . (63)
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At s = s2, there is an abrupt transition from regime II to III. The maximal eigenvalue t

jumps from a value t ≈ T
N

with T ∼ O(1) and t very close to ζ to a value t ≈
√

s−2√
N

much
larger than the other eigenvalues (t � ζ ). The rate function is continuous but its derivative
is discontinuous: N2 d�II

ds
|s=s−

2
≈ N5/3

22/3 , whilst N3/2 d�III

ds
|s=s+

2
≈ N5/3

4 22/3 for large N . At the
transition point s = s2, there is also a change of concavity of the curve: the rate function in

regime II is convex ( d2�II

ds2 > 0 for all s < 9/4) and has a minimum at s = s̄ = 2, whereas

the rate function in regime III is concave ( d2�III

ds2 < 0 for all s > 2).

Scaling �2 = S ≈ O(1) and Limit S → 1 (Unentangled State) In the far-right tail of
the distribution �2 = S ≈ O(1) (S � s/N , S ≤ 1) and the maximal eigenvalue t ≈ O(1)

whereas ζ (and all the other eigenvalues) remain of order O(1/N). In this limit, equa-
tions (53) and (54) become:

S ≈ t2 and L ≈ 4(1 − t) as t ≈ O(1) . (64)

The saddle point energy in (55) reduces to: ES[ρc, t] ≈ −N2

2 ln(1 − t) + N2( lnN
2 + 1

4 ) −
N lnN + O(N) as S ≈ O(1) with t = √

S. Using (49), we get an explicit expression for the
rate function �(N,S) = (ES[ρc, tc] − E[ρ∗, t∗])/N2 for large N :

�(N,S) ≈ (ES[ρc, t] − N2( lnN
2 + 1

4 ))

N2
≈ −1

2
ln(1 − √

S) ≡ �III (S) . (65)

We conclude that

P (�2 = S,N) ≈ e−βN2�III (S) ≈ (1 − √
S)

βN2

2 for large N , fixed S . (66)

The difference of scaling with respect to regimes I and II comes from the scaling of �2:
in regimes I (resp. II), we had �(N, s/N) → �I(s) (resp. �II (s)) for large N , whereas
here we have: �(N,S) → �III (S) for large N and fixed S ≈ O(1). As S = s/N with
fixed s and large N , which corresponds to the limit S → 0 in this scaling, we find
N2�III (S) ≈ N3/2 √

s/2 which is also the limit s → ∞ of N3/2�III (s). The right tail
(where S ≈ O(1/N)) and the far-right tail (where S ≈ O(1)) of the distribution match
smoothly.

As �2 = S tends to its maximal value 1, the maximal eigenvalue t → 1 and L → 0. At
S = 1, only one eigenvalue, the maximal one λmax = t , is nonzero (and equal to one). This
corresponds to an unentangled state (situation (i)). The probability of an unentangled state
(i.e. �2 → 1) is thus vanishingly small for large N .

4.3.4 General q > 1

Using again Tricomi’s theorem and imposing the constraints
∫

ρc = 1 and ρc(ζ ), we find
that the optimal charge density for the N − 1 smallest eigenvalues is given by:

ρc(λ) = 1

π(N − 1)

√
ζ − λ

λ

[

A + B 2F1

(

1,1 − q,
3

2
,1 − λ

ζ

)

+ C

t − λ

]

, (67)

where A = μ1, B = μ22qζ q−1 	(q+1/2)√
π	(q)

and C =
√

t
t−ζ

and 2F1 is a hypergeometric function

2F1(a, b, c, z) = ∑∞
n=0

(a)n(b)n
(c)n

zn

n! , with (a)n = a(a + 1) · · · (a + n − 1) denoting the raising
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Fig. 7 (Color online) Maximal eigenvalue λmax = t corresponding to a fixed value of the purity �2 = s/N

plotted against s for different values of N . Analytical predictions (solid lines) are compared with numerical
simulations (points: Monte Carlo data, method 2 with density). The theory predicts for large N a sudden
jump of t from a value t ≈ ζ = L(s)/N with L(s) = 2(3 − √

9 − 4s) (within regime II, s < s2) to a much

larger value t ≈
√

s−2√
N

(regime III, s > s2). We clearly see this jump in numerical simulations for N = 500

at s2 ≈ 2.23 and N = 1000 at s2 ≈ 2.18. For N = 50, finite-size corrections to the large N asymptotics are
considerable enough to smear the jump in t . Because of the choice of scaling on the plot, tN as a function of
s, the plots of the maximal eigenvalue in regime II are expected to be the same for different N (for large N ),
whereas the plots for regime III differ by a factor

√
N

factorial (Pochhammer symbol). The Lagrange multipliers μ1 and μ2 are given by:

μ1 = 4

(q − 1)ζ 2

[

qNζ − 2(q + 1) +
√

t

t − ζ
{(2q + 2)t − (2q + 1)ζ }

]

,

μ2 =
√

π	(q + 2)

ζ q+1	(q + 1/2)q(q − 1)

[

4 − Nζ +
√

t

t − ζ
{3ζ − 4t}

]

,

(68)

where ζ and t are solutions of the following system of equations:

(a) S − tq = ζ q−1	(q + 1/2)√
π	(q + 1)

{

2 − Nζ

2

(
q − 1

q + 1

)

+
√

t

t − ζ

[

ζ

(
3q + 1

2q + 2

)

− 2t

]}

+
√

t

t − ζ

ζ q+1	(q + 1/2)

2t
√

π	(q + 2)
2F1

(

1, q + 1

2
,2 + q,

ζ

t

)

, (69)

(b) μ1

√
t − ζ

t
+ qμ2t

q−1 = ζ

2t (t − ζ )
+ μ2

ζ q	(q + 1
2 )

t
√

π	(q)
2F1

(

1, q, q + 1,
ζ

t

)

, (70)

with μ1 = μ1(ζ, t) and μ2 = μ2(ζ, t) given in (68).
These equations can be solved analytically for large N and the solutions are qualitatively

the same as for q = 2.
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For S = N1−q s with s̄(q) < s < s0(q) (where s0(q) = 	(q+1/2)

2
√

π	(q+2)
(

4(1+q)

q
)q , see regime II),

there exist two different solutions for the pair (ζ, t). The first solution is of the form t ≈ ζ

with ζ ≈ O(1/N). This is exactly (to leading order in N ) the solution of regime II (see
below, “first solution”). There is also a second solution with t � ζ , more precisely ζ = L/N

with L ∼ O(1) and t ≈ O(1/N1−1/q) for S ≈ N1−q s, and ζ ≈ O(1/N) (see below, “second
solution”). For s close to s̄(q), the first solution dominates (regime II), but at some point
s = s2(q,N) > s̄(q) given in (74), the second solution, with t � ζ , starts to dominate (its
energy becomes lower): this is regime III.

For S > N1−q s0(q), i.e. s > s0, only the second solution remains: the upper bound of the
density support scales as ζ = L/N with L ∼ O(1) while the maximal eigenvalue is much
larger than all other eigenvalues: t � ζ .

In both cases (as for q = 2), for large N the upper bound ζ remains of order ∼ O(1/N)

(ζ ∼ λtyp). We shall thus write ζ = L
N

with L ∼ O(1). On the other hand (as for q = 2), the
maximal eigenvalue t scales from O(1/N) (as S → N1−q s̄(q)) to O(1) (as S → 1−).

Scaling S = N1−q s with s ∼ O(1): First Solution t ≈ ζ with ζ ∼ O(1/N) (Regime II)
For S = N1−q s with s ∼ O(1) for large N , the solution of regime II still exists as long
as s < s0(q). We recover this solution from the (69) and (70) with the scaling t = T

N
and

ζ = L
N

with T ≈ L ∼ O(1), where the maximal eigenvalue t remains very close to the other
eigenvalues (t ≈ ζ for large N ), it does not play a special role. Using (49), we finally get
�(N, s/N) = (ES[ρc, t] − ES[ρc, t]|s=2)/N

2 = �II (s), the same expression as in (41) of
regime II.

However, for s > s̄(q) there exists a second solution that becomes energetically more
favorable at some point s2(q,N). Therefore regime II is only valid for s1 < s < s2.

Scaling S = N1−q s with s ∼ O(1): Second Solution t � ζ (Regime III) For S = N1−q s

with s > s̄(q), there exists a second solution where one eigenvalue (λmax = t ) becomes much
larger than the other eigenvalues: t � ζ . In this limit, (69) and (70) give for large N :

t ≈ [s − s̄(q)]1/q

N1−1/q
and ζ ≈ 4

N

[

1 −
{

s − s̄(q)(1 + q)/2

[s − s̄(q)]1−1/q

}
1

N1−1/q

]

. (71)

For S → 1, which implies s → ∞ as N → ∞, we find t ≈ s1/q N1/q−1 = S1/q and ζ ≈
4
N

(1 − t) .
We can compute the saddle point energy in this limit replacing t and ζ by the expressions

given in (71) for large N . Finally, we get N2�(N, s/N) = ES[ρc, t] − N2( lnN
2 + 1

4 ) ≈
N

1+ 1
q [s−s̄(q)]1/q

2 for large N (see (49)) and the pdf of �q is thus given for large N by:

P (�q = N1−q s,N) ≈ exp
{−βN

1+ 1
q �III (s)

}
, (72)

where

�III (s) = [s − s̄(q)]1/q

2
for large N . (73)

The solution of regime III becomes energetically more favorable, that is N
1+ 1

q �III (s) <

N2�II (s), at some point s2(q,N) defined by N
1+ 1

q �III (s2) = N2�II (s2). Therefore

s2(q,N) ≈ s̄(q) + [√q/2 (q − 1) s̄(q)]2q/(2q−1)

N(q−1)/(2q−1)
for large N . (74)



Statistical Distribution of Quantum Entanglement for a Random 427

At s = s2, there is an abrupt transition from regime II to III. The maximal eigenvalue t

jumps from a value t ≈ T
N

with T ∼ O(1) and t very close to ζ to a value t ≈ [s−s̄(q)]1/q

N1−1/q

much larger than the other eigenvalues (t � ζ ). The rate function �(N, s/N) given by

N2 �(N, s/N) =
{

N2 �II (s) for s < s2 ,

N
1+ 1

q �III (s) for s > s2 ,
(75)

is continuous but its derivative is discontinuous. For large N , we have indeed N2 d�
ds

∣
∣
s−
2

≈
N

3q−1
2q−1 {(q − 1)

√
q/2 s̄(q)} 2−2q

2q−1 , whilst d�
ds

|s+
2

≈ d�
ds

|s−
2
/(2q). At the transition point s = s2,

there is also a change of concavity of the curve: the rate function in regime II is convex

( d2�II

ds2 > 0) and has a minimum at s = s̄, whereas the rate function in regime III is concave

( d2�III

ds2 < 0).

5 Distribution of the Renyi Entropy Sq

In Sect. 4, we have computed the full distribution of �q = ∑N

i=1 λ
q

i for large N . A sim-
ple change of variable gives the distribution of the Renyi entropy Sq = 1

1−q
ln[∑i λ

q

i ] =
1

1−q
ln[�q]. The scaling �q = N1−qs for large N implies Sq = lnN − ln s

q−1 . This means that
typical values of Sq will be of order Sq ≈ lnN −z with z ≈ O(1) for large N . The parameter
z = ln s

q−1 is nonnegative and its minimum z = 0 corresponds to Sq = lnN , which corresponds
to the maximally entangled state.

The distribution of the entropy is thus given for large N by:

P (Sq = lnN − z) ≈

⎧
⎪⎪⎨

⎪⎪⎩

exp{−βN2 φI (z)} for 0 < z ≤ z1(q) ,

exp{−βN2 φII (z)} for z1(q) < z ≤ z2(q) ,

exp{−βN
1+ 1

q ψIII (z)} for z > z2(q) .

(76)

The three regimes are the same as for �q . The rate functions φI , φII and ψIII are simply
obtained from the rate functions �I , �II and �III for the distribution of �q (see (11)) by
the change of variable s = exp[(q − 1)z], e.g. φI (z) = �I(e

(q−1)z). Explicit expressions of
the functions �I and �II are given in (32) and (36) for q = 2, and in (41) for a general
q > 1; an explicit expression of �III is given in (44) for a general q > 1 (and in (45) for
q = 2).

The critical points are given by

z1(q) = ln s1(q)

q − 1
and z2(q,N) = ln s2(q,N)

q − 1
, (77)

where s1 and s2 are the critical points for �q (see (15) and (16)).
The distribution of the entropy Sq has the same qualitative behaviour as that of �q : it

is a highly peaked distribution with Gaussian behaviour around the mean value and non-
Gaussian tails. Again, the average value of Sq coincides with the most probable value for
large N , 〈Sq〉 ≈ lnN − z̄(q) where z̄(q) is the minimum of φII :

〈Sq〉 ≈ lnN − z̄(q) with z̄(q) = ln s̄(q)

q − 1
= 1

q − 1
ln

[
	(q + 1/2)

	(q + 2)

4q

√
π

]

. (78)
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The rate function φII (z) has a quadratic behaviour around z = z̄(q): φII (z) ≈ (z−z̄(q))2

q
.

Therefore, the distribution of the entropy Sq has a Gaussian behaviour around its average:

P (Sq = lnN − z) ≈ exp

{

−βN2 (z − z̄(q))2

q

}

for z ≈ z̄(q) , (79)

which gives the variance of the distribution:

VarSq ≈ q

2βN2
for large N . (80)

5.1 Limit q → 1+: von Neumann Entropy

As q → 1+, the Renyi entropy Sq tends to the von Neumann entropy SVN = −∑
i λi lnλi .

The limit q → 1 is singular for the distribution of �q : because of the constraint �1 =∑
i λi = 1, the distribution tends to a Dirac-δ function. The variance tends to zero (σ 2

q → 0)
and the mean value s̄(q) as well as the critical point s1(q) and s2(q) tend to 1. However, due
to the factor 1/(1 − q) in the definition of Sq , the limit q → 1 is not at all singular for the
entropy Sq . Taking this limit only requires to be careful. For SVN (as for Sq for q > 1), there
are three regimes in the distribution:

P (SVN = lnN − z) ≈

⎧
⎪⎪⎨

⎪⎪⎩

exp{−βN2 φI (z)} for 0 < z ≤ z1 ,

exp{−βN2 φII (z)} for z1 < z ≤ z2 ,

exp{−β N2

lnN
φIII (z)} for z > z2 ,

(81)

where φII and φIII are respectively given in (84) and (88). We could not compute explicitly
φI (as we could not compute �I for the Renyi entropy for a general q > 1 except for q = 2).
For q → 1, we get: z̄(q) = ln s̄(q)

q−1 → 1/2 (where z̄(q) is given in (78)). We thus recover the
already known mean value of the von Neumann entropy (see [4]) in the case c = 1 (M ≈ N ):

〈SVN〉 ≈ lnN − 1

2
for large N . (82)

The critical points separating the three regimes are given by (limit q → 1 in (77) and (15)):

z1 = 2

3
− ln

3

2
≈ 0.26 and z2 ≈ z̄ = 1

2
. (83)

We easily obtain the expression of the rate function φII in regime II by taking the limit
q → 1. We get:

φII (z) = −1

2
ln

(
L

4

)

+ 8

L2
− 6

L
+ 1 , (84)

where L = L(z) is the solution of (limit q → 1 in (39))

ln

(
L

4

)

− L

8
+ 1 = z . (85)

For large N , the mean value corresponds to the minimum of φII . The quadratic approxi-
mation of φII around this minimum z ≈ z̄ gives the Gaussian behaviour of the pdf of SVN
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around its average and thus the variance in the large N limit:

〈SVN〉 ≈ lnN − z̄ with z̄ = 1

2
and VarSVN ≈ 1

2βN2
. (86)

The limit q → 1 for the regime III is a bit more subtle. We would expect the rate function
to be of the form N2ψIII (z), but ψIII = �III (e

(q−1)z) (in (44)) vanishes as q → 1. The rate
function actually scales as N2/ lnN (rather than N2 as one could naïvely expect). This can
be shown by a more detailed analysis of the equations (69) and (70) in the limit q → 1. The
solution t � ζ is actually given for q → 1 by:

t ≈ z − 1/2

lnN
and ζ ≈ 4

N

(

1 + 1 − z

lnN

)

. (87)

The saddle point energy can be computed in this limit. We finally find:

− lnP (SVN = lnN − z) ≈ β
N2

lnN
(z − 1/2) ; φIII (z) = z − 1

2
. (88)

5.2 Limit q → ∞: Maximal Eigenvalue

As q → ∞ the Renyi entropy Sq tends to − lnλmax where λmax is the maximal eigenvalue.
Again, the limit is singular for the distribution of �q but not for Sq . There are the same three
regimes in the distribution of λmax for large N as in the distribution of the Renyi entropy.

For large N , the typical scaling is Sq ≈ lnN − z, thus − lnλmax ≈ lnN − z or λmax ≈ ez

N
.

Setting t = ez, we have λmax = t/N . In particular, the mean value is given by t̄/N where

t̄ = limq→∞ exp(z̄(q)) = limq→∞[s̄(q)] 1
q−1 = 4, implying

〈λmax〉 ≈ 4

N
. (89)

The first critical point is t1 = limq→∞[s1(q)] 1
q−1 = 4/3. The second critical point is t2 =

t̄ = 4. The three regimes in the distribution of the maximal eigenvalue are the following:

P

(

λmax = t

N

)

≈

⎧
⎪⎪⎨

⎪⎪⎩

e−βN2χI (t) for 1 < t ≤ 4/3 (reg. I) ,

e−βN2χII (t) for 4/3 < t ≤ 4 (reg. II) ,

e−βNχIII (t) for t > 4 (reg. III) .

(90)

The rate functions can be explicitly computed. The rate function in regime I is given by:

χI (t) = −1

2
ln(t − 1) for 1 < t ≤ 4/3 . (91)

In regime II, we find:

χII (t) = 4
(1 − t)

t2
− 1

2
ln

(
t

4

)

+ 3

4
for 4/3 < t ≤ 4 . (92)

Finally, in regime III the maximal eigenvalue detaches from the sea of the other eigenvalues
and we get:

χIII (t) =
√

t (t − 4)

2
− 2 ln(

√
t + √

t − 4) + 2 ln 2 for t > 4 . (93)
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Again, at the first critical point t1 = 4/3, the rate function χ is continuous and twice dif-

ferentiable, but its third derivative is discontinuous: d3χI

dt3 = −27 but d3χII

dt3 = −999/64. The
average value t̄ = 4 is the minimum of χII . At the second critical point t2 = 4, the rate
function is continuous but not differentiable.

Exactly as we did for �q , we can also consider the regime where λmax = T (T � t/N ):
the far-right tail of the distribution. We find:

P (λmax = T ) ≈ e−βN2χ+(T ) χ+(T ) = −1

2
ln(1 − T ) for 0 < T < 1 , (94)

which matches smoothly regime III. We have indeed: NχIII (t) ≈ N t
2 as t → ∞ and

N2χ+(t) ≈ N2 T
2 ≈ N t

2 as T → 0 with T = t/N .

Ideas of Proof Regimes II and III can be derived by taking carefully the limit q → ∞
(directly in the expression of the rate function for regime II but more carefully for regime
III). The distribution of λmax can also be computed directly (without taking the limit q →
∞). This gives the same results for regimes II and III and gives also an explicit expression
for regime I (where the rate function is not explicitly known for a general q > 1). We can
actually calculate the cumulative distribution Prob(λmax ≤ Z) by the same Coulomb gas
method as before. This is indeed easier to compute because the probability that λmax ≤ Z

is the probability that all the eigenvalues λi are smaller than Z. We can thus compute this
probability with the Coulomb gas method, with a continuous density ρ(x) = 1/N

∑
i δ(x −

λiN) and with the constraint that no eigenvalue exceeds Z:

P (λmax ≤ Z) ∝
∫

Dρ e−βN2EZ [ρ] . (95)

The energy reads

EZ[ρ] = −1

2

∫ Z

0

∫ Z

0
ρ(x)ρ(x ′) ln |x − x ′|dx dx ′ + μ0

(∫ Z

0
ρ(x)dx − 1

)

+ μ1

(∫ Z

0
xρ(x)dx − 1

)

, (96)

where the Lagrange multipliers μ0 and μ1 enforce the two constraints
∫

ρ = 1 (normaliza-
tion of the density) and

∫
xρ = 1 (unit sum of the eigenvalues:

∑
i λi = 1). The saddle point

method gives:

P (λmax ≤ Z) ∝ e−βN2EZ [ρc] , (97)

where ρc minimizes the effective energy EZ . This yields regimes I and II. Exactly as for Sq ,
in regime III, the maximal eigenvalue detaches from the sea of the other charges (eigen-
values), it must be taken into account separately from the continuous density of the other
eigenvalues.

In regime I, the optimal charge density has a finite support [L1,L2] and vanishes at L1,2

(exactly as for �q ). We get the rate function χI in (91).
In regime II, the optimal charge density has a finite support ]0,L], vanishes at L but

diverges at the origin with a square root divergence (exactly as for �q ). We get the rate
function χII in (92). This expression can also be obtained by taking the limit q → ∞ of the
expression in (41) of �II , valid for a general q (for �q ).
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In regime III, the maximal eigenvalue is much larger than the others and we get χIII in
(93). The limit q → ∞ in the rate function ψIII for a general q gives: ψIII → t/2. This is
actually equal to χIII (t) only in the limit t → ∞, but not for all t > 4. For q > 1, regime

III is characterized by t ≈ T/N
1− 1

q � ζ as ζ ≈ L/N , which becomes t ≈ T/N > ζ in the
limit q → ∞. The maximal eigenvalue is larger than the other eigenvalues, but not much
larger. We cannot anymore assume t � ζ in the computation of the energy. We must com-
pute carefully the energy ES[ρc, t] in this limit. For this computation, we use the complete
expression of ES : for q = 2, this expression was given in (55); for a general q , we have a
similar but more complicated expression. We use this expression in the limit where t and
ζ are both of order one (with t > ζ ) and where q → ∞. We finally get χIII (t) as given in
(93).

5.2.1 Typical Fluctuations Around the Average: Tracy-Widom Distribution

We have seen that the average value of the maximal eigenvalue, in the large N limit, is given
by 〈λmax〉 ≈ 4/N . Of course, λmax fluctuates around this average from sample to sample. The
Coulomb gas method presented in this subsection captures fluctuations ∼ O(1/N) around
this mean, i.e., large fluctuations that are of the same order of magnitude as the mean itself.
We have seen that the probability of such large ∼ O(1/N) fluctuations is very small, indi-
cating that they are rare atypical fluctuations. The typical fluctuations around the mean occur
at a much finer scale around this mean which is not captured by the Coulomb gas method.

To compute the distribution of such typical fluctuations, we start from the joint distri-
bution in (5). The cumulative probability of the maximum can be written as the multiple
integral

P (λmax ≤ Z) ∝
∫ Z

0
· · ·

∫ Z

0
P (λ1, λ2, . . . , λN)dλ1 dλ2 · · ·dλN (98)

Next we can replace the delta function δ(
∑N

i=1 λi − 1) by its integral representation: δ(x) =
(1/2πi)

∫
dpepx where the integral runs over the imaginary axis. This gives, for M = N ,

P (λmax ≤ Z) ∝
∫

dp

2πi
ep

∫

[0,Z]

[ N∏

i=1

dλi

]

e−p
∑N

i=1 λi

N∏

i=1

λ
β
2 −1
i

∏

i<j

|λi − λj |β . (99)

Rescaling λi → (β/2p)λi , one can recast the integral as

P (λmax ≤ Z)

∝
∫ i∞

−i∞

dp

2πi
ep p−βN2/2

∫

[0,2pZ/β]

[ N∏

i=1

dλi

]

e− β
2

∑N
i=1 λi

N∏

i=1

λ
β
2 −1
i

∏

i<j

|λi − λj |β .

(100)

The integral over λi ’s is just proportional to the cumulative distribution of the maximum of
the Wishart matrix, i.e., the P Wishart (λmax ≤ 2pZ/β). This latter quantity, in the large N

limit, is known [49, 50] to converge to a limiting distribution known as the Tracy-Widom
distribution [51, 52], i.e,

P Wishart (λmax ≤ y) → Fβ

[
(y − 4N)

24/3N1/3

]

(101)
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where Fβ(x) satisfies a nonlinear differential equation [51, 52]. Using this result in (100),
we get, in the large N limit,

P (λmax ≤ Z) ∝
∫ i∞

−i∞

dp

2πi
ep− β

2 N2 log(p) Fβ

[ 2p

β
Z − 4N

24/3N1/3

]

. (102)

The integral over p can now be evaluated via the saddle point method. To leading order
for large N , one can show that the saddle point occurs at p∗ = βN2/2 that just minimise

the exponential factor ep− β
2 N2 log(p). Hence, to leading order in large N , we obtain our main

result

P (λmax ≤ Z) ≈ Fβ

[
Z − 4/N

24/3N−5/3

]

. (103)

This shows that λmax in our problem typically fluctuates on a scale O(N−5/3) around its
average 4/N ,

typical λmax = 4

N
+ 24/3N−5/3χβ , (104)

where the distribution of the random variable χβ is the Tracy-Widom probability density
function gβ(x) = dFβ(x)/dx. Around the mean value we have then

P

(

λmax = t

N

)

≈ N5/3 gβ(2−4/3N2/3(t − 4)) . (105)

Matching Between the Tails of the Tracy-Widom Distribution and the Large Deviation Rate
Functions For Gaussian and Wishart matrices, it has been recently demonstrated [33–36]
that the Tracy-Widom density describing the probability of typical fluctuations of the largest
eigenvalue matches smoothly, near its tails, with the left and right rate functions that de-
scribe the probability of atypical large fluctuations. It would be interesting to see if the same
matching happens in our problem as well. Indeed, we find that the tails of the Tracy-Widom
distribution match smoothly to our previously obtained rate functions.

For the left tail of the Tracy-Widom density, it is known [51, 52] that gβ(x) ∼
exp{− β

24 |x|3} for x → −∞. Therefore P (λmax = t
N

) ∼ exp{−βN2 |t−4|3
384 }. On the other

hand, for the rate function to the left of the mean describing large fluctuations of ∼ O(1/N)

is given in (92). Taking the limit t → 4−, we find χII (t) ≈ − (t−4)3

384 thus matching smoothly
with the left tail of the Tracy-Widom density.

For the right tail, one knows [51, 52] gβ(x) ∼ exp{− 2β

3 x3/2} for x → +∞. Therefore

P (λmax = t
N

) ∼ exp{−βN (t−4)3/2

6 }. On the other hand, the rate function describing large
fluctuations of order ∼ O(1/N) to the right of the mean is given in (93). Expanding to

leading order for t → 4+, we get: χIII (t) ≈ (t−4)3/2

6 which clearly matches smoothly to the
right tail of the Tracy-Widom density.

6 Numerical Simulations

To verify the analytical predictions derived in the preceding sections, we simulated the joint
distribution of eigenvalues in (5):

P (λ1, . . . , λN) = BM,N δ

(∑

i

λi − 1

) N∏

i=1

λ
β
2 (M−N+1)−1
i

∏

i<j

|λi − λj |β
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= BM,N δ
(∑

i

λi − 1
)

e−βE[{λi }] , (106)

where the effective energy E[λi] is given by E[λi] = −γ
∑N

i=1 lnλi − ∑
i<j ln |λi − λj |

with γ = M−N+1
2 − 1

β
and with

∑
i λi = 1. We sampled this probability distribution using a

Monte Carlo Metropolis algorithm (see [53]).

6.1 Standard Metropolis Algorithm

We start with an initial configuration of the λi ’s satisfying
∑N

i=1 λi = 1 and λi > 0 for all i.
At each step, a small modification {λi} → {λ′

i} is proposed in the configuration space. In
our algorithm, the proposed move consists of picking at random a pair (λj , λk) (with j �= k)
and proposing to modify them as (λj , λk) → (λj + ε,λk − ε), which naturally conserves the
sum of the eigenvalues. ε is a real number drawn from a Gaussian distribution with mean
zero and with a variance that is set to achieve an average rejection rate 1/2.

The move is rejected if one of the eigenvalues becomes negative. Otherwise, the move is
accepted with the standard probability

p = min

(
P (λ′

1, . . . , λ
′
N)

P (λ1, . . . , λN)
,1

)

= min
(
e−β(E[{λ′

i
}]−E[{λi }]),1

)
, (107)

and rejected with probability 1 − p. This dynamics enforces detailed balance and ensures
that at long times the algorithm reaches thermal equilibrium (at inverse “temperature” β)
with the correct Boltzmann weight e−βE[{λi }] and with

∑
i λi = 1.

At long times (from about 106 steps in our case), the Metropolis algorithm thus generates
samples of {λi} drawn from the joint distribution in (106). We can then start to compute
some functions of the λi ’s, e.g. the purity �2 = ∑

i λ
2
i , and construct histograms, e.g. for the

density, the purity, etc.
However, as the distribution of the purity (as well as the one of the eigenvalues) is highly

peaked around its average, a standard Metropolis algorithm does not allow to explore in
a “reasonable” time a wide range of values of the purity. The probability to reach a value
�2 = s/N decreases rapidly with N as e−βN2�(s) where �(s) is a positive constant (for
s different from the mean value: s �= s̄). Therefore, we modified the algorithm in order to
explore the full distribution of the purity and to compare it with our analytical predictions.

6.2 Method 1: Conditional Probabilities

It is difficult to reach large values �2 = s/N of the purity (s > s̄). The idea is thus to force
the algorithm to explore the region s ≥ sc for different values of sc. We thus add in the
algorithm the constraint s ≥ sc . More precisely, we start with an initial configuration that,
in addition to

∑
i λi = 1 and λi > 0 for all i, satisfies also

∑
i λ

2
i ≥ sc/N . At each step, the

proposed move is rejected if
∑

i λ
′2
i < sc/N . If

∑
i λ

′2
i ≥ sc/N , then the move is accepted

or rejected exactly with the same Metropolis rules as before. Because of the new constraint
s ≥ sc , the moves are rejected much more often than before. Therefore the variance of the
Gaussian distribution P (ε) has to be taken smaller to achieve a rejection rate 1/2.

We run the program for several values of sc (about 20 different values) and we construct
a histogram of the purity for each value sc . This gives the conditional probability distribution
P (�2 = s

N

∣
∣�2 ≥ sc

N
). Again, as the distribution of the purity is highly peaked, the algorithm

can only explore a very small range of values of s—even for a large running time (about
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108 steps). The difference with the previous algorithm is that we can now explore small
regions of the form sc ≤ s ≤ sc + η for every sc , whereas before we could only explore the
neighbourhood of the mean value s̄.

The distribution of the purity is given by

P

(

�2 = s

N

)

= P

(

�2 = s

N

∣
∣
∣�2 ≥ sc

N

)

∗ P

(

�2 ≥ sc

N

)

(for sc < s) . (108)

Therefore the rate function reads:

�(s) = − 1

β N2
lnP

(

�2 = s

N

)

= − 1

β N2

[

lnP

(

�2 = s

N

∣
∣�2 ≥ sc

N

)

+ lnP

(

�2 ≥ sc

N

)]

. (109)

The histogram constructed by the algorithm with the constraint s ≥ sc is the rate function
�sc (s) = − 1

β N2 lnP (�2 = s
N

|�2 ≥ sc
N

). �sc (s) differs from the exact rate function �(s) by
an additive constant that depends on sc. In order to get rid of this constant, we construct
from the histogram giving �sc (s) the derivative d�sc (s)

ds
. This derivative is equal to d�(s)

ds

and the constants disappear. We can now compare numerical data with the derivative of the
analytical expression for the rate function �(s).

We can also come back to �(s) from its derivative using an interpolation of the data
for the derivative and a numerical integration of the interpolation. This allows to compare
directly the numerical results with the theoretical rate function �(s).

We can follow the same steps to explore the region on the left of the mean value s < s̄

by adding in the simulations the condition
∑

i λ
2
i ≤ sc

N
(instead of

∑
i λ

2
i ≥ sc

N
) for several

values of sc < s̄.
We typically run the simulations for N = 50 and 108 iterations. As Fig. 5 shows, nu-

merical data and analytical predictions agree very well for regimes I and II (rate functions
given in (32) and (36)). For regime III, finite-size effects are important and agreement holds
for large but finite N analytical formulae (taking as rate function the expression of the en-
ergy in (55) with t and ζ numerical solutions of the system of equations (53) and (54)). The
agreement would degrade for the asymptotic rate function giving only the dominant term for
very large N (45). Finite-size effects are also important for the transition between regimes II
and III. Large-N data are crucial to see clearly this abrupt transition with a sudden jump of
the maximal eigenvalue. For N = 50, the transition appears indeed to be smoothed out. This
observation can be rationalized as follows. At the transition (s = s2), the maximal eigenvalue

t is expected to jump for large N from a value ∼ 5
N

to a much larger value ∼
√

s−2
N

, yet for

N = 50 we have 5
N

>

√
s−2
N

for all s < 9/4. We thus conclude that no jump can be seen at
N = 50 and much larger N are needed. Adapting the simulation method to cope with this
challenge is the subject of the next subsection.

6.3 Method 2: Simulation of the Density of Eigenvalues (and Conditional Probabilities)

We want to be able to run simulation for very large values of N . The idea is to simulate
the density ρ(λ) = 1

N

∑
i δ(λ − λi) rather than the eigenvalues themselves. In the previous

scheme, a configuration was made of N variables, the N eigenvalues. In the new code, we
have k + 2 � N variables:
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(1) the maximal eigenvalue t .
(2) the upper bound of the density support ζ (ζ < t ).
(3) the value of the density at each point xi = iζ

k
(for 0 ≤ i < k).

We must enforce the condition ρ(ζ ) = 0, i.e. ρ(xk) = 0 by definition of the upper bound
ζ of the density support. The idea is to replace the real density by a linear approximation of
the density defined by its value at xi for 0 ≤ i ≤ k.

These k + 2 variables describing the maximal eigenvalue and the density of the other
eigenvalues simulate configurations with N � k eigenvalues, for example N = 1000 with
k = 50. The number of eigenvalues N appears in the expression of the energy (and in the
constraints). With this new code, we can now simulate configurations with many eigenvalues
in a reasonable time.

6.3.0.1 The Algorithm From the analytical calculations, we expect that the density di-
verges when λ → 0+ as ρ(λ) ∼ 1√

λ
. In order to get a better approximation in our code, we

choose to discretize a regularized form of the density ρ̄(λ) ≡ √
λρ(λ). Our (k +2) variables

are thus:

(1) the maximal eigenvalue t .
(2) the upper bound of the regularized density support ζ (ζ < t ), which is the same as the

upper bound of the density support.
(3) the value of the regularized density at each point xi = iζ

k
(for 0 ≤ i < k): zi ≡ ρ̄(xi).

In the Monte Carlo simulation, we compute the energy as well as the constraints
(
∑

i λi = 1, etc.) by using a linear interpolation of the regularized density ρ̄(λ):

ρ̃(λ) = zi + zi+1 − zi

xi+1 − xi

(λ − xi) for λ ∈ [xi, xi+1[ , (110)

with zi = ρ̄(xi) (in particular zk = 0). Integrals such as
∫

dλλρ(λ) are computed using the
linear interpolation as:

∫ ζ

0
dλρ(λ)λ ≈ 4

15

(
ζ

k

) 3
2
[

z0 +
k−1∑

i=1

zi{(i + 1)
5
2 + (i − 1)

5
2 − 2 i

5
2 }

]

. (111)

There are two constraints for the density : the normalization
∫

ρ = 1 and the unit sum
of the eigenvalues t + (N − 1)

∫
λρ = 1. We start from an initial configuration satisfying

these constraints: for example, we can take for the initial ρ a density of the form of the

(normalized) average density ρ(λ) = 2
πζ

√
ζ−λ

λ
and fix t with the unit sum constraint t =

−(N − 1)
∫

λρ + 1. Initially, we also choose ζ not too large such that the condition
∑

i λ
2
i >

sc/N is satisfied (for a fixed value of sc), exactly as in the code with conditional probabilities.
At each step, we propose a move in the configuration space (our k + 2 variables) that

naturally enforces the two constraints
∫

ρ = 1 and t + (N − 1)
∫

λρ = 1 (unit sum). More
precisely, at each step we choose randomly three integers between 0 and k + 1: i1 < i2 < i3.

– If i3 < k (case 1), we propose a move (zi1 , zi2 , zi3) → (zi1 + α1ε, zi2 + α2ε, zi3 + α3ε),
where ε is drawn from a Gaussian distribution with zero mean and a variance adjusted to
have the standard rejection rate 1/2 at the end. α1, α2 and α3 are constants that are chosen
such that the constraints

∫
ρ = 1 and t + (N − 1)

∫
λρ = 1 (unit sum of eigenvalues) are
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satisfied:

α1 = [
(i3 + 1)3/2 + (i3 − 1)3/2 − 2i

3/2
3

][
(i2 + 1)5/2 + (i2 − 1)5/2 − 2i

5/2
2

]

− [
(i2 + 1)3/2 + (i2 − 1)3/2 − 2i

3/2
2

][
(i3 + 1)5/2 + (i3 − 1)5/2 − 2i

5/2
3

]

α2 and α3 are obtained from α1 by cyclic permutation of i1, i2 and i3.
– If i1 < i2 < i3 = k (case 2), we propose a move (ζ, zi1 , zi2) → (ζ + ε, zi1 + ε1, zi2 + ε2)

where ε is drawn from a Gaussian distribution with zero mean and a variance adjusted to
have the standard rejection rate 1/2 at the end (different from the variance of case 1), and
where ε1 and ε2 are functions of ε, i1 and i2 fixed by the two constraints (

∫
ρ = 1 and unit

sum).
– If i1 < i2 < k and i3 = k + 1 (case 3), we propose a move (t, zi1 , zi2) → (t + ε, zi1 +

ε1, zi2 + ε2), where, exactly as in case 2, ε is drawn from a Gaussian distribution, and ε1

and ε2 are functions of ε, i1 and i2 fixed by the two constraints (
∫

ρ = 1 and unit sum).
– If i1 < i2 = k and i3 = k +1 (case 4), we propose a move (ζ, zi1 , t) → (ζ + ε, zi1 + ε1, t +

dt), where ε is drawn from a Gaussian distribution (same as in case 2), and ε1 and dt are
functions of ε and i1 fixed by the two constraints (

∫
ρ = 1 and unit sum).

Then, if ζ > t , if ζ < 0, if zi < 0 or if
∑

i λ
2
i < sc/N , that is (N − 1)

∫
λ2 ρ + t2 < sc/N ,

the move is rejected. Otherwise we compute the energy of the new configuration Enew and
accept the move with the usual Metropolis probability p = min(e−β(Enew−E),1) (and reject
it with probability 1 − p).

Direct inspection of the previous rules shows that detailed balance is satisfied. There-
fore, after a large number of iterations, thermal equilibrium with the appropriate Boltzmann
weight is reached and we can start to construct histograms of the density and the purity.
We verified that for N = 50 (simulated with k + 2 variables, where k = 20) we recover the
results of the direct Monte Carlo (where we simulate directly the eigenvalues). For N = 500
and N = 1000 (with k = 50), we get very interesting results that can be used to test the large-
N analytical predictions (see (32) and (36) for regimes I and II and (45) for regime III):
Fig. 6 shows the good agreement between theory and numerical simulations with this sec-
ond method, for the distribution of the purity �2 = ∑

i λ
2
i with N = 1000. As Fig. 7 shows,

we can really see the abrupt jump of the maximal eigenvalue and the change of behaviour
of the rate function (discontinuous derivative), which is expected at the transition between
regime II and regime III for very large N .

The simulations also provide solid support to the fact that a single eigenvalue detaches
from the sea in regime III. One might indeed wonder whether configurations with multiple
charges detaching from the sea could be more favorable. This was ruled out by measuring
the area of the rightmost “bump” in the density of charges (see Fig. 3) and verifying that
it corresponds to a single charge. This fact is also intuitively rationalized as follows. Let
us consider configurations with two charges, λ1 and λ2 (λ1 ≥ λ2), detaching from the sea.
As in (47), we require λ

q

1 + λ
q

2 = tq and we consider the quantity C = 1 − λ1 − λ2, which
quantifies the compression of the sea of charges and would replace 1− t in the μ1 constraint
in (47). The smaller is C , the stronger is the compression of the sea (with the other constraints
remaining the same). Since the charges repel each other, the energy of the configuration
is expected to increase as C gets smaller. An elementary calculation shows that, due to
the convexity of λq for q > 1, C is minimum when λ1 = λ2 = 2−1/q t while its maximum
(minimum energy) is attained at the boundary λ1 = t , λ2 = 0, corresponding indeed to a
single charge detaching from the sea.
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7 Conclusion

In this paper, by using a Coulomb gas method, we have computed the distribution of the
Renyi entropy Sq for q > 1 for a random pure state in a large bipartite quantum system, i.e.
with a large dimension N of the smaller subsystem. We have showed that there are three
regimes in the distribution P (Sq = lnN − z) that are a direct consequence of two phase
transitions in the associated Coulomb gas.

(i) Regime I corresponds to the left tail of the distribution (0 < z < z1(q)). In this phase,
the effective potential seen by the Coulomb charges has a minimum at a nonzero point. The
charge density has a finite support over [L1,L2] (and vanishes at L1 and L2), the charges
accumulate around the minimum of the potential.

(ii) Regime II describes the central part of the distribution (z1(q) < z < z2(q)), and in
particular the vicinity of the mean value z̄(q). At the transition between regimes I and II,
the third derivative of the rate function (logarithm of the distribution) is discontinuous. In
this phase, the charges concentrate around the origin, the charge density has a finite support
over [0,L] with a square-root divergence at the origin. Close to the mean value of Sq , the
distribution is Gaussian.

(iii) Regime III describes the right tail of the distribution (z > z2(q)), corresponding to
a more and more unentangled state. In this phase, one charge splits off the sea of the other
charges. The transition between regimes II and III is abrupt with a sudden jump of the
rightmost charge (largest eigenvalue). There is thus a discontinuity of the derivative of the
rate function (first-order phase transition) and the scaling with N changes at this point.

A by-product of our results is the fact that, although the average entropy is close to its
maximal value lnN , the probability of a maximally entangled state is actually very small.
The probability density function of the entropy indeed vanishes at z = 0 (far left tail), i.e. at
Sq = lnN , which is the maximally entangled situation. Similar properties and three different
regimes are also obtained in the limit q → 1, which gives us the distribution of the von
Neumann entropy, and in the limit q → ∞, which yields the distribution of the maximal
eigenvalue.
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