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Abstract. In this paper, we first briefly review some recent results on the
distribution of the maximal eigenvalue of an (N × N) random matrix drawn
from Gaussian ensembles. Next we focus on the Gaussian unitary ensemble
(GUE) and by suitably adapting a method of orthogonal polynomials developed
by Gross and Matytsin in the context of Yang–Mills theory in two dimensions,
we provide a rather simple derivation of the Tracy–Widom law for GUE. Our
derivation is based on the elementary asymptotic scaling analysis of a pair of
coupled nonlinear recursion relations. As an added bonus, this method also allows
us to compute the precise subleading terms describing the right large deviation
tail of the maximal eigenvalue distribution. In the Yang–Mills language, these
subleading terms correspond to non-perturbative (in 1/N expansion) corrections
to the two-dimensional partition function in the so called ‘weak’ coupling regime.
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1. Introduction

Quite a long time ago, Wigner [1] introduced random matrices in the context of nuclear
physics. He suggested that the highly excited energy levels of complex nuclei can locally
be well represented by the eigenvalues of a large random matrix. A big nucleus is a
rather complex system composed of many strongly interacting quantum particles and it
is practically impossible to describe its spectral properties via first principle calculations.
The idea of Wigner was to model the spectral properties of the complex Hamiltonian of
such a big nucleus by those of a large random matrix preserving the same symmetry. This
was a very successful approach in nuclear physics. Since then, the random matrix theory
(RMT) has gone beyond nuclear physics and has found a wide number of applications in
various fields of physics and mathematics including quantum chaos, disordered systems,
string theory and even number theory [2]. A case of special interest is the one of Gaussian
random matrices (originally introduced by Wigner himself) where the entries of the matrix
are Gaussian random variables.

Depending on the symmetry of the problem, Dyson distinguished three classes for the
matrix X [3]:

• the Gaussian orthogonal ensemble (GOE): X is real symmetric.

• the Gaussian unitary ensemble (GUE): X is complex Hermitian.

• the Gaussian symplectic ensemble (GSE): X is quaternionic Hermitian.

Let us write X† the adjoint of X, i.e. the transpose of X for the GOE, the complex
conjugate transpose for the GUE and the quaternionic conjugate transpose for the GSE.

doi:10.1088/1742-5468/2011/04/P04001 2

http://dx.doi.org/10.1088/1742-5468/2011/04/P04001


J.S
tat.M

ech.
(2011)

P
04001

A simple derivation of the Tracy–Widom distribution for Gaussian unitary random matrices

A Gaussian random matrix is an N × N self-adjoint matrix X, i.e. X† = X distributed
according to the law

P(X) ∝ e−(β/2) Tr(X2) with β =

⎧
⎪⎨

⎪⎩

1 for GOE

2 for GUE

4 for GSE

(1)

where, for convenience, we have chosen the prefactor β of the Tr(X2) to be β = 1 for the
GOE, β = 2 for the GUE and β = 4 for the GSE. For instance, for the GUE we have β = 2
and P(X) ∝ e−Tr(X2) ∝ e−

∑
i,j |Xi,j |2 as X2 = X†X =

∑
i,j |Xi,j|2. This means that X is

an N × N complex Hermitian matrix with entries ReXi,j and ImXi,j for i < j that are
independent (real) random variables distributed according to the same centred Gaussian
law with variance 1/4 and the Xi,i are (real) independent Gaussian variables with mean
0 and variance 1/2. In the case of GSE, there are 2N eigenvalues, each of them two-fold
degenerate and Tr in (1) for β = 4 is defined so that only one of the two-fold degenerate
eigenvalues in X is counted.

Self-adjoint matrices can be diagonalized and have real eigenvalues. The joint
distribution of eigenvalues of the Gaussian ensemble is well known [4, 2]

P(λ1, . . . , λN) = BNe−(β/2)
∑N

i=1 λ
2
i

∏

j<k

|λj − λk|β (2)

where BN is a normalization constant such that
∫

(
∏

i dλi)P(λ1, . . . , λN) = 1 (it depends
on β) and the power β of the Vandermonde term is called the Dyson index β = 1, 2
or 4 depending on the ensemble (resp. GOE, GUE or GSE). Note that we have chosen
the prefactor of the Tr(X2) term in (1) to be the same as the Dyson index β just for
convenience. This prefactor is not very important as it can be absorbed by rescaling
the matrix entries by a constant factor. In contrast, the value of the Dyson index
β = 1, 2 or 4, characterizing the power of the Vandermonde term, plays a crucial
role. The normalization constant BN can be computed using Selberg’s integral [2]:

BN = β(N/2)+β(N(N−1)/4)(2π)−N/2Γ(1 + β/2)N/[
∏N

j=1 Γ(1 + jβ/2)].

Because of the presence of the Vandermonde determinant
∏

j<k(λj − λk) in

equation (2), the eigenvalues are strongly correlated random variables, they repel each
other. In this paper, our focus is on the statistical properties of the extreme (maximal)
eigenvalue λmax = max(λ1, λ2, . . . , λN). Had the Vandermonde term been not there in
the joint distribution (2), the joint distribution would factorize and the eigenvalues would
thus be completely independent random variables, each with a Gaussian distribution. For
such independent and identically distributed random variables {λi}, the extreme value
statistics is well understood [5] and the distribution of the maximum, properly shifted
and scaled, belongs to one of the three universality classes Gumbel, Frechet or Weibull
(for large N) depending on the tail of the distribution of individual λis. However, in the
case of random matrix theory, the eigenvalues λis are strongly correlated variables. For
strongly correlated random variables there is no general theory for the distribution of the
maximum. In the case of Gaussian random matrices, where the joint distribution (2)
is explicitly known, much progress has been made in understanding the distribution of
λmax following the seminal work by Tracy and Widom [6, 7]. This then provides a very
useful solvable model for the extreme value distribution in a strongly correlated system
and hence is of special interest.
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Figure 1. Average density of the eigenvalues of a Gaussian random matrix ρN (λ)
as a function of λ (black dashed line). The density has a semi-circular shape
(‘Wigner semi-circle’) and a finite support [−√2N/α,

√
2N/α]. The maximal

eigenvalue has mean value 〈λmax〉 ≈ √2N/α for large N and its distribution
close to the mean value, over a scale of O(N−1/6) has the Tracy–Widom form (red
solid line). However, over a scale (

√
N) the distribution has large deviation tails

shown by solid green (left large deviations) and solid blue (right large deviations)
lines.

Let us first summarize some known properties of the random variable λmax. Its average
value can be easily obtained from the right edge of the well-known Wigner semi-circle
describing the average density of eigenvalues. For a Gaussian random matrix of large size
N , the average density of eigenvalues (normalized to unity) ρN (λ) = 〈(1/N)

∑
i δ(λ−λi)〉

has a semi-circular shape on a finite support [−√
2N,

√
2N ] called the Wigner semi-

circle [1]:

ρN (λ) ≈ 1√
N
g

(
λ√
N

)

with g(x) =
1

π

√
2 − x2 for large N. (3)

The quantity ρN (λ)dλ represents the average fraction of eigenvalues that lie within the
small interval [λ, λ+dλ]. Therefore, equation (3) means that the eigenvalues of a Gaussian

random matrix lie on average within the finite interval [−√
2N,

√
2N ]. Note also that one

can rewrite, using the joint distribution in (2)

ρN (λ) =

〈
1

N

∑

i

δ(λ− λi)

〉

=

∫

P(λ, λ2, . . . , λN) dλ2 · · · dλN . (4)

Hence the average density of states ρN (λ) can also be interpreted as the marginal
distribution of one of the eigenvalues (say the first one). Thus, the marginal distribution
also has the shape of a semi-circle. Figure 1 shows the average density ρN (λ) (α = 1
here).

It then follows that the average value of the maximal eigenvalue λmax is given for
large N by the upper bound of the density support:

〈λmax〉 ≈
√

2N for large N. (5)

However, λmax fluctuates around this average value from one realization to another and
has a distribution around its mean value

√
2N (see figure 1 with α = 1). What is the full
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probability distribution of λmax? From the joint distribution of eigenvalues in equation (2),
it is easy to write down formally the cumulative distribution function (cdf) of λmax as a
multiple integral

PN(λmax ≤ t) = BN

N∏

i=1

∫ t

−∞
dλi
∏

j<k

|λj − λk|β e−(β/2)
∑N

i=1 λ
2
i (6)

which can be interpreted as a partition function of a Coulomb gas in the presence of a
hard wall at the location t (see the discussion in section 2). The question is how does
PN(λmax ≤ t) behave for large N? It turns out that the fluctuations of λmax around its

mean
√

2N have two scales for large N . While typical fluctuations scale as N−1/6, large
fluctuations scale as N1/2 and their probability distributions are described by different
functional forms (see figure 1 with α = 1).

Typical fluctuations. From an asymptotic analysis of the multiple integral in equation (6),
Forrester [8], followed Tracy and Widom [6, 7] deduced that for large N , small and typical

fluctuations of the maximal eigenvalue around its mean value
√

2N are of order O(N−1/6)
and can be written as

λmax ≈
√

2N + aβN
−1/6 χ (7)

where a1,2 = 1/
√

2 (for GOE and GUE) and a4 = 2−7/6 (GSE) and χ is a random variable
characterizing the typical fluctuations. Tracy and Widom [6, 7] proved that for large N ,
the distribution of χ is independent of N : P (χ ≤ x) = Fβ(x). The function Fβ(x) depends
explicitly on β and is called the Tracy–Widom distribution. For example, for β = 2 [6, 7],

F2(x) = exp

[

−
∫ ∞

x

(z − x)q2(z) dz

]

(8)

where q(z) satisfies the special case of α = 0 of the Painlevé II equation

q′′(z) = 2q3(z) + z q(z) + α. (9)

For α = 0, the solution only requires the right tail boundary condition for its unique
specification: q(z) ∼ Ai(z) as z → ∞, where Ai(z) is the Airy function that satisfies the

differential equation Ai′′(z) − zAi(z) = 0 and vanishes as, Ai(z) ≈ (1/2
√
πz1/4) e−(2/3)z3/2

as z → ∞. This solution of the special case α = 0 of the Painlevé-II equation is called
the Hastings–McLeod solution [9]. For β = 2 and 4, one has [6, 7]

F1(x) = [F2(x)]
1/2 exp

[

−1
2

∫ ∞

x

q(z) dz

]

(10)

F4(x) = [F2(x)]
1/2 cosh

[
1
2

∫ ∞

x

q(z) dz

]

. (11)

Note that Fβ(x) = Prob(χ ≤ x) is the cumulative probability of the scaled random
variable χ and hence it approaches 1 as x → ∞ and vanishes to 0 as x → −∞. The
corresponding probability density function (pdf) F ′

β(x) = dFβ(x)/dx vanishes as x→ ±∞
doi:10.1088/1742-5468/2011/04/P04001 5
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in an asymmetric fashion. For β = 1, 2

F ′
β(x) ∼ exp

[

− β

24
|x|3
]

as x→ −∞ (12)

∼ exp

[

−2β

3
x3/2

]

as x→ ∞ (13)

F ′
4(x) ∼ exp

[

− 1

24
|x|3
]

as x→ −∞

∼ exp

[

−4

3
x3/2

]

as x→ ∞.

Over the last decade or so, the Tracy–Widom distribution has appeared in a wide variety
of problems ranging from statistical physics and probability theory all the way to growth
models and biological sequence matching problems (for reviews see [10]–[13]). These
include the longest increasing subsequence or the Ulam problem [14, 15, 10], a wide
variety of (1 + 1)-dimensional growth models [16]–[20], directed polymers in a random
medium [21] and the continuum Kardar–Parisi–Zhang equation [22]–[25], the Bernoulli
matching problem between two random sequences [26], and non-intersecting Brownian
motions (see e.g. [27, 28] and references therein). This distribution has also been measured
in a variety of recent experiments, e.g., in the height distribution of fronts generated in
a paper burning experiment [29], in turbulent liquid crystals [30] and more recently in
coupled fibre laser systems [31].

Large deviations: Tracy–Widom distribution describes the probability of typical
fluctuations of λmax around its mean (on a scale of N−1/6), but not the atypical large

fluctuations, i.e., fluctuations of order O(
√
N) around the mean value

√
2N . Questions

regarding such large/rare fluctuations do arise in various contexts [32]–[34] and have
recently been computed [32]–[35] to dominant order for large N . As a summary, the
probability density of λmax, P(λmax = t) = (d/dt)[PN (λmax ≤ t)], is given for large N by:

P(λmax = t)

≈

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

exp

{

−βN2ψ−

(
t√
N

)

+ · · ·
}

for t <
√

2N and |t−√
2N | ≈ O(

√
N)

1

aβN−1/6
F ′
β

(
t−√

2N

aβN−1/6

)

for |t−√
2N | ≈ O(N−1/6)

exp

{

−βNψ+

(
t√
N

)

+ · · ·
}

for t >
√

2N and |t−√
2N | ≈ O(

√
N)

(14)

where Fβ(x) is the Tracy–Widom distribution and where ψ− and ψ+ are respectively the
left and right large deviation functions describing the tails of the distribution of λmax.
The rate function ψ−(z) was explicitly computed in [32, 33], while ψ+(z) was computed
in [35], both by simple physical methods exploiting the Coulomb gas analogy. A more
complicated, albeit mathematically rigorous, derivation of ψ+(z) in the context of spin

doi:10.1088/1742-5468/2011/04/P04001 6
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glass models can be found in [36]. These rate functions read

ψ−(z) =
z2

3
− z4

108
−

√
z2 + 6

(z3 + 15z)

108

− 1

2
ln

[√
z2 + 6 + z√

2

]

+
ln 3

2
, for z <

√
2

ψ+(z) =
z
√
z2 − 2

2
+ ln

[
z −√

z2 − 2√
2

]

, for z >
√

2. (15)

Note that in [35], the function ψ+(z) was expressed in terms of a complicated
hypergeometric function, which however can be reduced to a simple algebraic function
as presented above in equation (15). Note also that while Fβ(x) depends explicitly on β,
the rate functions ψ−(z) and ψ+(z) are independent of β. These rate functions only give
the dominant order for large N in the exponential. In other words, the precise meaning
of ≈ is that for large N : limN→∞(1/βN2) lnP(λmax = z

√
N) = −ψ−(z) for z <

√
2 and

limN→∞(1/βN) lnP(λmax = z
√
N) = −ψ+(z) for z >

√
2. When z approaches

√
2 (from

below or above) it is easy to see that the rate functions vanish respectively as

ψ−(z) → 1

6
√

2
(
√

2 − z)3 + · · · (16)

ψ+(z) → 27/4

3
(z −

√
2)3/2 + · · · . (17)

Note that the physics of the left tail [32, 33] is very different from the physics of the right
tail [35]. In the former case, the semi-circular charge density of the Coulomb gas is pushed
by the hard wall (z <

√
2) leading to a reorganization of all the N charges that gives rise

to an energy difference of O(N2) [32, 33]. In contrast, for the right tail z >
√

2, the
dominant fluctuations are caused by pulling a single charge away (to the right) from the
Wigner sea, leading to an energy difference of O(N) [35].

The different behaviour of the probability distribution for z <
√

2 and z >
√

2 leads
to a ‘phase transition’ strictly in the N → ∞ limit at the critical point z =

√
2 in the

following sense. Indeed, if one scales λ by
√
N and takes the N → ∞ limit, one obtains

− lim
N→∞

1

βN2
ln PN(λmax ≤ z

√
N) = ψ−(z) for z <

√
2

= 0 for z >
√

2. (18)

Note that since PN (λmax ≤ t) can be interpreted as a partition function of a Coulomb
gas (see equation (6)), its logarithm has the interpretation of a free energy. Since
ψ−(z) ∼ (

√
2 − z)3 as z → √

2 from below, the third derivative of the free energy is
discontinuous at the critical point z =

√
2. Hence, this can be interpreted as a third order

phase transition.
However, for finite but large N , it follows from (14) that the behaviour to the left

of z =
√

2 smoothly crosses over to the behaviour to the right as one varies z through
its critical point z =

√
2 and the Tracy–Widom distribution in (14) around the critical

point is precisely this crossover function. Indeed, if one zooms in close to the mean value√
2N by setting t =

√
2N+xN−1/6/

√
2 (for β = 1, 2) in the rate functions ψ−(t/

√
N) and

doi:10.1088/1742-5468/2011/04/P04001 7
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ψ+(t/
√
N) in (14), one expects to recover, by taking largeN limit, respectively the left and

the right tail of the Tracy–Widom distribution. With this scaling, and using (17), one finds

ψ+(t/
√
N) ≈ 2x3/2/3N and thus P(λmax = t) ∼ exp{−(2β/3)x3/2}, which indeed matches

the dominant order in the far right tail of the Tracy–Widom distribution for β = 1, 2
in (13). Similarly for the left tail (x < 0), using (16), one finds ψ−(t/

√
N) ≈ |x|3/24N2,

thus P(λmax = t) ∼ exp{−(β/24)|x|3}, which matches the left tail of the Tracy–Widom
distribution in (12).

More recently, higher order corrections for large N have been computed for the left
tail of the distribution [37] using methods developed in the context of matrix models.
Note that in [37] a different notation for β was used: β = 1/2 (GOE), β = 1 (GUE) and
β = 2 (GSE). To avoid confusion, we present below the results in terms of the standard
Dyson index β = 1, 2, 4.

P (λmax = t) ≈ exp

{

−ΦN

(
t√
N
, β

)}

for t <
√

2N and |t−
√

2N | ≈ O(
√
N)

(19)

where

ΦN (z, β) = βN2ψ−(z) +N(β − 2)Φ1(z) + φβ lnN + Φ0(β, z) (20)

with ψ−(z) given in equation (15) (dominant order). The subleading terms are given
by [37]

Φ1(z) =
z2

6
− z

√
z2 + 6

12
+

z

4
√

3
(z2 + 6)1/4(

√
z2 + 6 − 2z)1/2

+
ln 18

4
− 1

2
ln[2

√
z2 + 6 − z +

√
3(z2 + 6)1/4(

√
z2 + 6 − 2z)1/2] (21)

and

φβ = −7

4
− 1

12

(
β

2
+

2

β

)

, (22)

and (see equations (4)–(35) in [37])

Φ0(β, z) =

(
1

12
β +

1

3β
− 1

3

)

ln 2 +

(
19

12β
+

19β

48
+

9

8

)

ln 3

+
1

2
ln π +

(−21

48
+

11

24

(
1

β
+
β

4

))

ln[6 + z2]

+

(
3

8
− 1

4β
− β

16

)

ln
[
−2z +

√
6 + z2

]

+

(
1

2
− 1

3β
− β

12

)

ln[z +
√

6 + z2]

+

(−4

3
+

4

3β
+
β

3

)

ln

[√

−2z +
√

6 + z2 +
√

3(z2 + 6)1/4

]

+
5

3

(

1 − 1

β
− β

4

)

ln

[

−z + 2
√

6 + z2 +
√

3(z2 + 6)1/4

√√
6 + z2 − 2z

]

− ln
[
(−18 + z2)z + (6 + z2)3/2

]− lnβ

2
− κβ (23)
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Figure 2. Rate function − lnP(λmax = z
√

N) associated with the distribution
P(λmax = t) of the maximal eigenvalue of a random matrix from the GUE for
large N . Close to the mean value z =

√
2, the distribution is a Tracy–Widom

law (red line), it describes the small typical fluctuations around the mean value.
Atypical large fluctuations are described by the large deviations: the left large
deviation in green (z <

√
2), the right deviation in blue (z >

√
2).

where κβ is a complicated function of β. For β/2 integer, it reduces to [37]

κβ =

(
β/2 + 1

4

)

ln (2π) +
2ζ ′ (−1)

β
− ln (β/2)

6β
−

(β/2)−1∑

m=1

2m

β
ln Γ

(

2
m

β

)

. (24)

For instance, for the GUE (β = 2), we find κ2 = (ln(2π)/2) + ζ ′(−1). For β = 1, 2
and 4, the expression in equation (20) matches the left asymptotics of the Tracy–Widom
distribution, i.e. the asymptotic behaviour of F ′

β(x) for x → −∞, see [38]. However, for
the right tail of the distribution of λmax, the corrections to dominant order for large N
are, to our knowledge, not known until now. In fact, one of the results of this paper is
to compute these right tail corrections for the GUE (β = 2). Both left and right large
deviations are plotted in figure 2 for the GUE. The left tail is described by ΦN (z, 2) in
equation (20), the right tail is described by our result given in equation (26).

Another result of this paper concerns a simpler and pedestrian derivation of the
Tracy–Widom distribution for the GUE case. The original derivation of the Tracy–
Widom law for the distribution of typical fluctuations of λmax [6, 7] is somewhat complex
as it requires a rather sophisticated and nontrivial asymptotic analysis of the Fredholm
determinant involving the Airy Kernel [6, 7]. Since this distribution appears in so many
different contexts, it is quite natural to ask if there is any other simpler (more elementary)
derivation of the Tracy–Widom distribution. In this paper, we provide such a derivation
for the GUE case. Our method is based on a suitable modification of a technique of
orthogonal polynomials developed by Gross and Matytsin [39] in the context of two-
dimensional Yang–Mills theory. In fact, the partition function of the continuum two-
dimensional pure Yang–Mills theory on a sphere (with gauge group U(N)) can be written
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(up to a prefactor) as a discrete multiple sum over integers [40, 41]

Z(A,N) =

∞∑

n1,n2,...,nN=−∞

∏

1≤i<j≤N
(ni − nj)

2 e−(A/2N)
∑N

j=1 n
2
j (25)

where A is the area of the sphere. In theN → ∞ limit, the free energy lnZ, as a function of
A, undergoes a third order phase transition known as the Douglas–Kazakov transition [42]
at the critical value Ac = π2. For A > Ac, the system is in the ‘strong’ coupling phase
while for A < Ac, it is in the ‘weak’ coupling phase. For finite but large N , there is a
crossover between the two phases as one passes through the vicinity of the critical point.
In the so called double scaling limit (where A → Ac, N → ∞ but keeping the product
(A−Ac)N

2/3 fixed), the singular part of the free energy satisfies a Painlevé II equation [39].
Gross and Matytsin (see also [43]) used a method based on orthogonal polynomials to
analyse the partition sum in the double scaling limit, as well as in the weak coupling
regime (A < Ac), where they were able to compute non-perturbative (in 1/N expansion)
corrections to the free energy. Actually, a similar third order phase transition from a
weak to strong coupling phase in the N → ∞ limit was originally noticed in the lattice
formulation (with Wilson action) of the two-dimensional U(N) gauge theory [44, 45, 14]
and in the vicinity of the transition point the singular part of the free energy was shown to
satisfy a Painlevé II equation [46]. Note that similar calculations involving the asymptotic
analysis of partition functions using orthogonal polynomials were used extensively in the
early 1990s to study the double scaling limit of the so called one-matrix model (for a
recent review and developments, see e.g. [47]).

In our case, for the distribution of λmax, we need to analyse the asymptotic large
N behaviour of a multiple indefinite integral in equation (6), as opposed to the discrete
sum in equation (25). However, we show that one can suitably modify the orthogonal
polynomial method of Gross and Matytsin to analyse the multiple integral in equation (6)
in the limit of large N . In fact, we find a similar third order phase transition (in the
N → ∞ limit) in the largest eigenvalue distribution PN (λmax ≤ t) as a function of t at

the critical point tc =
√

2N . The regime of left large deviation of PN(λmax ≤ t) (t < tc)
is similar to the ‘strong’ coupling regime (A > Ac) of the Yang–Mills theory, while the
right large deviation tail of PN(λmax ≤ t) (t > tc) is similar to the ‘weak’ coupling regime
(A < Ac) of the Yang–Mills theory. For finite but large N , the crossover function across
the critical point that connects the left and right large deviation tails is precisely the
Tracy–Widom distribution. Thus the Tracy–Widom distribution corresponds precisely
to the double scaling limit of the Yang–Mills theory and one finds the same Painlevé II
equation. A similar third order phase transition was also found recently in a model of
non-intersecting Brownian motions by establishing an exact correspondence between the
reunion probability in the Brownian motion model and the partition function in the 2d
Yang–Mills theory on a sphere [27, 48].

The advantage of this orthogonal polynomial method to analyse the maximum
eigenvalue distribution is two fold: (i) one gets the Tracy–Widom distribution in a simple
elementary way (basically one carries out a scaling analysis of a pair of nonlinear recursion
relations near the critical point and shows that the scaling function satisfies a Painlevé
II differential equation) and (ii) as an added bonus, we also obtain precise subleading

corrections to the leading right large deviation tail (t >
√

2N). The subleading corrections,
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in the Yang–Mills language, correspond to the non-perturbative corrections in the weak
coupling regime as derived by Gross and Matytsin [39]. More precisely we show that

P(λmax = t) ≈
√
N

2π
√

2 (t2 − 2N)
e−2Nψ+(t/

√
N) for t >

√
2N, |t−

√
2N | ≈ O(

√
N)

(26)

where ψ+(z) is given in equation (15). Note that only the leading behaviour
exp[−2Nψ+(z)] was known before [35], but the subleading corrections are, to our
knowledge, new results. We also verify that our expression matches the precise right
asymptotics of the Tracy–Widom distribution. Figure 2 shows the distribution of λmax

for the GUE: close to the mean value it is described by the Tracy–Widom distribution,
whereas the tails are described by the large deviations. The right tail (right large
deviation) is given by our result in equation (26). Together with the subleading terms
in the left tail in equation (20), our new result in equation (26) then provides a rather
complete picture of the tail behaviours of the distribution of λmax on both sides of the
mean

√
2N .

The rest of the paper is organized as follows. In section 2, we start with some
general notations and scaling remarks for the GUE. In section 3, we explain the method
of orthogonal polynomials on a semi-infinite interval and derive some basic recursion
relations. In section 4, we compute the right tail of the distribution of λmax (dominant
order and corrections for the GUE): it describes atypical large fluctuations of λmax to
the right of its mean value. In section 5, using results of the previous sections and basic
scaling remarks, we derive the Tracy–Widom law (with β = 2 for the GUE) that describes
small typical fluctuations close to the mean value.

2. Notations and scaling

In the rest of the paper we focus only on Gaussian random matrices X drawn from the
GUE (β = 2). They are Hermitian random matrices X† = X such that P(X) ∝ e−α Tr(X2),
where we have introduced an additional parameter α > 0 for the purpose of certain
mathematical manipulations that will be clear later. Setting α = 1 at the end of the
calculation, we will recover the usual GUE. With the additional parameter α, the joint
distribution of the eigenvalues of X is given by (see equation (2)):

P(λ1, . . . , λN) = BN(α)e−α
∑N

i=1 λ
2
i

∏

j<k

(λj − λk)
2 (27)

where BN(α) = (2α)N
2/2 (2π)−N/2/[

∏N
n=1 n!] is the normalization constant. The

Vandermonde determinant appears with a power 2 as we consider the GUE (β = 2).
This determinant indeed comes from a Jacobian for the change of variables from the
entries of the matrix to its eigenvalues. The power is related to the number of real degrees
of freedom of an element of the matrix, which is 2 for complex entries, i.e., for GUE (it is
1 for real entries GOE and 4 for quaternion entries GSE). As we will see later, this power
2 is crucial for the method of orthogonal polynomials to work. The technique of Gross
and Matytsin [39] that we adapt here also works only for the GUE β = 2 case.
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Given the joint distribution of eigenvalues in equation (27), it is easy to write down
the cumulative distribution of the maximal eigenvalue λmax

PN(λmax ≤ y) = Prob[λ1 ≤ y, λ2 ≤ y, . . . , λN ≤ y] =
ZN(y, α)

ZN(∞, α)
(28)

where the partition function ZN is given by the multiple indefinite integral

ZN(y, α) =
1

N !

N∏

i=1

∫ y

−∞
dλi
∏

j<k

(λj − λk)
2 e−α

∑N
i=1 λ

2
i . (29)

The normalization ZN(∞, α) is actually related to BN(α) in equation (27) as BN(α) =
1/(N !ZN(∞, α)). Note that, by the trivial rescaling

√
αλi → λi in (29), it follows

from (28) that

PN(λmax ≤ y) =
ZN(y, α)

ZN(∞, α)
=
ZN(y

√
α, 1)

ZN(∞, 1)
. (30)

Thus y and α always appear in a single scaling combination y
√
α.

We will henceforth focus on the large N limit. For fixed α, one can easily figure out
from the joint pdf in equation (27) how a typical eigenvalue λtyp scales with N for large
N . Let us rewrite the joint distribution of eigenvalues in equation (27) as

P(λ1, . . . , λN) ∝ exp

{

−α
∑

i

λ2
i + 2

∑

j<k

ln |λj − λk|
}

(31)

which can then be interpreted as a Boltzmann weight ∝ exp[−Eeff ], with effective energy
Eeff = α

∑
i λ

2
i − 2

∑
j<k ln |λj − λk|. The eigenvalues can thus be seen as the positions of

N charges of a 2D Coulomb gas (but restricted to be on the real line) which repel each
other via a logarithmic Coulomb potential (coming from the Vandermonde determinant
in equation (27)) [12]. In addition, the charges are subjected to an external confining
parabolic potential. For large N , the first term of the energy is of order Nλ2

typ, whereas

the second is of order N2 because of the double sum. Balancing the two terms Nλ2
typ ∼ N2

gives the scaling of a typical eigenvalue for large N : λtyp ∼ √
N . For large N , the

eigenvalues are close to each other and they can be described by a continuous charge
density (normalized to unity) ρN(λ) = (1/N)

∑
i δ(λ − λi). The average density of

states for large N can be obtained by evaluating the full partition function ZN(∞, α)
(the denominator in equation (28)) via a saddle point method. The saddle point
density is the density that minimizes the effective energy (see the book of Mehta [2])
Eeff = αN

∫
dλ ρN(λ)λ2−N2

∫
dλ
∫

dλ′ ρN(λ)ρN (λ′) ln |λ−λ′| (in its continuous version).
This gives the well-known semi-circle law (which is exactly the same as in equation (3)
for α = 1):

ρN (λ) =
1√
N
ρ

(
λ√
N

)

with ρ(x) =
α

π

√
2

α
− x2. (32)

The density is plotted in figure 1.
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The average value of λmax is again given for large N by the upper bound of the density
support (see figure 1):

〈λmax〉 ≈
√

2N

α
for large N. (33)

For α = 1, this evidently reduces to the usual expression for 〈λmax〉. The typical scaling

for large N is thus λmax ∼ √
N . Hence, we will use λmax = z

√
N , where z is of order one.

3. Orthogonal polynomials

In this section, we introduce the method of orthogonal polynomials to evaluate the
partition function in equation (29). As mentioned in the introduction, to evaluate
this multiple indefinite integral we will adapt the method developed by Gross and
Matytsin [39] to enumerate the partition sum (25) in the two-dimensional Yang–Mills
theory. Orthogonal polynomials are very useful to handle the square Vandermonde
determinant in the distribution of the eigenvalues in equation (27). A Vandermonde
determinant can indeed be written as

∏
i<j(λj − λi) = det(λj−1

i )i,j = det(pj−1(λi))i,j,

where pj(λ) = λj + · · · is any polynomial of degree j with leading coefficient one. The
idea is to choose these polynomials pj well in order to simplify the computation of the
integral.

We define an operation on pairs of polynomials as follows:

〈f, g〉 =

∫ y

−∞
dλ e−αλ

2

f(λ)g(λ). (34)

We consider a family {pn}n≥0 of orthogonal polynomials with respect to the operation

defined above, i.e. with weight e−αλ
2

on the interval ]−∞, y]. Without any loss of
generalization, we define the polynomial pn(λ) of degree n such that the coefficient of
the λn term is always fixed to be 1, i.e., pn(λ) = λn + · · ·. These polynomials satisfy the
orthogonality property: 〈pn, pm〉 = 0 for all n �= m. We also write hn = 〈pn, pn〉. Thus,

〈pn, pm〉 = δn,mhn for all n ≥ 0. (35)

Note that pn(λ) and hn are implicitly functions of α and y, i.e. pn(λ) = pn(λ|y, α) and
hn = hn(y, α). In particular, we can easily compute by hand the first few pn(λ)s for fixed
α > 0 and y, but the expressions become rather complex as n increases and it is hard to
find a closed form expression for pn(λ) for every n (except for the limiting case y → ∞):

p0(λ) = 1

p1(λ) = λ+
e−αy

2

√
πα[1 + erf(y

√
α)]

p2(λ) = λ2 +
−2y

√
α− ey

2α
√
π(1 + 2y2α)(1 + erf[y

√
α])√

α(2 + 2ey2α
√
πy

√
α(1 + erf[y

√
α]) − e2y2απ(1 + erf[y

√
α])2)

λ

+
−4 − 4ey

2α
√
πy

√
α(1 + erf[y

√
α]) + e2y2απ(1 + erf[y

√
α])2

4α + 4ey2α
√
πyα3/2(1 + erf[y

√
α]) − 2e2y2απα(1 + erf[y

√
α])2

.

Thus we get for instance h0 = 〈p0|p0〉 = (
√
π/[2

√
α])[1 + erf(y

√
α)] and h1 = 〈p1|p1〉 =

(−2y
√
αe−αy

2
+
√
π[1 + erf(y

√
α)] − 2e−2αy2/(

√
π[1 + erf(y

√
α)]))/4α3/2, etc. In the limit

y → ∞, we recover the Hermite polynomials: p0 = 1, p1 = λ, p2 = λ2 − 1/(2α) and
h0 =

√
π/

√
α, h1 =

√
π/(2α3/2), h2 =

√
π/(2α5/2).
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3.1. Partition function

The partition function ZN(y, α) in equation (29) can be written as a function of the hns.
By combination of rows, the Vandermonde determinant in the joint distribution of the
eigenvalues can indeed be written

∏

j<k

(λk − λj) = det(λj−1
i )i,j = det(pj−1(λi))i,j.

Then, the partition function can be expressed as

ZN(y, α) =
1

N !

N∏

i=1

∫ y

−∞
dλi
∏

j<k

(λj − λk)
2 e−α

∑N
i=1 λ

2
i

=
1

N !

N∏

i=1

∫ y

−∞
dλi det(pj−1(λi))i,j det(pl−1(λk))k,l e

−α ∑N
i=1 λ

2
i

= det

[∫ y

−∞
dλ e−αλ

2

pi−1(λ)pj−1(λ)

]

i,j

= det(〈pi−1|pj−1〉)i,j = det(δi,jhi−1)i,j =
N−1∏

i=0

hi

where in going from the second to the third line we have used the Cauchy–Binet
formula [2]. Note that this step works only for β = 2. Therefore the partition function
reduces to:

ZN(y, α) =
N−1∏

n=0

hn(y, α). (36)

Thus the integral ZN(y, α) is now expressed as a product of the coefficients hn. The goal
of next subsection is to find recursion relations for the hns in order to compute them and
subsequently analyse their product ZN in equation (36) in the large N limit.

3.2. Recursion relations

In general, for orthogonal polynomials (with any reasonable weight function), one can
write a recursion relation of the form:

λpn(λ) = pn+1(λ) + Snpn(λ) +Rnpn−1(λ) (37)

where Sn and Rn are real coefficients. This relation comes from the fact that pn = λn+ · · ·
and that 〈pn|q〉 = 0 for any polynomial q(λ) of degree strictly smaller than n. The
coefficients Sn and Rn are functions of α and y, i.e. Sn = Sn(y, α) and Rn = Rn(y, α).

Let us first demonstrate that the coefficients Rn and Sn can be expressed in terms of
hns. From equation (37), we get: 〈pn−1|λpn〉 = Rn〈pn−1|pn−1〉 = Rnhn−1. On the other
hand, we have 〈pn−1|λpn〉 = 〈λpn−1|pn〉 = 〈pn+Sn−1 pn−1 +Rn−1 pn−2|pn〉 = 〈pn|pn〉 = hn.
Therefore Rnhn−1 = hn, thus Rn = hn/hn−1.

From equation (37) again, we also get: 〈pn|λpn〉 = Sn〈pn|pn〉 = Snhn. By

definition we have 〈pn|λpn〉 =
∫ y
−∞ dλ e−αλ

2
λp2

n(λ). After integrating by parts we

find: 〈pn|λpn〉 = −(1/(2α))e−αy
2
p2
n(y) = −(1/(2α))∂hn(y, α)/∂y. The last equality
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follows from the definition of hn. As hn =
∫ y
−∞ dλ e−αλ

2
p2
n(λ), we have indeed

∂hn(y, α)/∂y = e−αy
2
p2
n(y|y, α) + 2〈pn|∂pn/∂y〉. However, 〈pn|∂pn/∂y〉 = 0 as ∂pn/∂y

is a polynomial of degree strictly smaller than n (as pn(λ|y, α) = λn + · · ·). Therefore
Sn = −(1/(2α)) ∂ lnhn/∂y.

Combining these relations, Rn and Sn are then given by:

Rn(y, α) =
hn(y, α)

hn−1(y, α)
and Sn(y, α) = − 1

2α

∂ lnhn(y, α)

∂y
(38)

Iterating the recursion relation hn = Rnhn−1 starting from n = 1, we can write hn in
terms of Rks:

hn =

(
n∏

k=1

Rk

)

h0. (39)

Substituting this result in equation (36), we see that the partition function ZN can be
entirely expressed in terms of a product over the Rns. Thus, if we can determine Rns, we
can evaluate the partition function explicitly.

Thus the next task is to determine the Rns. To do this, we will first derive a set
of coupled recursion relations for Rns and Sns. We have ∂hn/∂α = ∂〈pn|pn〉/∂α =

− ∫ y−∞ dλ e−αλ
2
λ2 p2

n(λ) = −〈λpn|λpn〉 where we have used the fact that 〈pn|∂pn/∂α〉 = 0
(which follows from the observation that ∂pn/∂α is a polynomial of degree strictly less
than n and hence orthogonality dictates that it is identically zero). On the other hand,
using equation (37) we find: 〈λpn|λpn〉 = 〈pn+1 +Snpn+Rnpn−1|pn+1 +Snpn+Rnpn−1〉 =
hn+1 + S2

nhn +R2
nhn−1 = hn(Rn+1 + S2

n + Rn). Therefore,

−∂ lnhn
∂α

= Rn +Rn+1 + S2
n. (40)

We can eliminate hn from the relations (38) and (40) and get a pair of coupled nonlinear
recursion relations for Rn and Sn. Using equation (40) for n and n − 1, and as
Rn = hn/hn−1, we find −∂ lnRn/∂α = Rn+1 −Rn−1 +S2

n−S2
n−1. Using equation (38), we

also find ∂ lnRn/∂y = 2α(Sn−1−Sn). Finally, we then get our desired recursion relations:

Rn+1 = −∂ lnRn

∂α
+Rn−1 − S2

n + S2
n−1 (41)

Sn = Sn−1 − 1

2α

∂ lnRn

∂y
. (42)

It is easy to show by induction that the two relations (41) and (42) together with the
initial conditions R0, R1 and S0 uniquely determine Rn and Sn. The additional initial
condition h0 is enough to determine hn as given in equation (39).

By definition, p0 is a polynomial of degree 0 with dominant coefficient 1. Thus
p0(λ|y, α) = 1. Therefore h0(y, α) = 〈p0|p0〉 =

∫ y
−∞ dλ e−αλ

2
= (1/2)

√
π/α(1 + erf(y

√
α)).

We also have R0(y, α) = 0 as the recursion relation in equation (37) must reduce for n = 0
to λp0(λ) = p1(λ) + S0p0(λ), i.e., p1(λ) = λ − S0. Moreover we get from equation (38)

S0 = −(1/(2α))∂ lnh0/∂y = −e−αy
2
/(2αh0) = −e−αy

2
/[
√
πα(1 + erf(y

√
α))]. We

now have R0, S0 and h0, we can thus determine R1 from equation (40) for n = 0:
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R1 = −∂ lnh0/∂α − R0 − S2
0 = yS0 + 1/(2α) − S2

0 . Thus, the initial conditions can
be summarized as:

R0(y, α) = 0, p0(λ|y, α) = 1,

h0(y, α) =

∫ y

−∞
dλ e−αλ

2

=
1

2

√
π

α

(
1 + erf(y

√
α)
)

S0(y, α) = − 1

2α

∂ lnh0

∂y
= −e−αy

2

2αh0

= − e−αy
2

√
πα (1 + erf(y

√
α))

R1(y, α) = yS0 +
1

2α
− S2

0 .

(43)

3.3. Normalization: limit y → ∞
As y → ∞, we can explicitly compute the functions Sn, Rn and hn. As mentioned above,
in the limit y → ∞ the polynomials pn are indeed simply the Hermite polynomials.
Hence everything can then be computed explicitly in this case. We have h0(∞, α) =
∫∞
−∞ dλ e−αλ

2
=
√
π/α and S0(∞, α) = 0. Then, by recurrence it is easy to show that:

Sn(∞, α) = 0 Rn(∞, α) =
n

2α
. (44)

Finally, using equation (39) we get

hn =

√
π

α

n!

(2α)n
(45)

and thus (see equation (36))

ZN(∞, α) = (2π)N/2(2α)−N
2/2

N∏

n=1

Γ(n) (46)

which could also have been computed directly using Selberg’s integral. We recover the
normalization BN = 1/(N !ZN) in equation (27).

4. Right tail of the distribution of λmax: large deviation function

In section 3 we derived a pair of coupled recursion equations (41) and (42) with initial
conditions given in equation (43) that determines uniquely Rn, Sn and thus hn and
subsequently ZN via (36). However, these equations are hard to solve explicitly for general
n and y (apart from the case y = +∞ as shown in section 3.3). In this section, we derive
an approximate solution for ZN and hence for the cdf (28), in the large N limit where
N is the number of eigenvalues of the matrix X and we will see that this solution for
cdf is valid only for λmax > 〈λmax〉 =

√
2N/α, i.e., it only describes the right tail of the

probability distribution.
We have seen in section 2 that for large N and fixed α, the maximal eigenvalue

typically scales as λmax ∼ √
N . We are going to work on this scale, hence in the definition

of the maximal eigenvalue cdf in (28) and (29), we will set y = z
√
N with z ≈ O(1).

We will then work in the limit of large N with z fixed. With this scaling, the operation
〈f, g〉 defined in equation (34) for polynomials depends on N (since the upper limit of
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integration in (34) is now z
√
N). The coefficients Rn, Sn and hn, for a given n, are also

now implicitly functions of N . We can make an expansion of these parameters for large
N and fixed n. The dominant order will be given by the y = +∞ case (as in section 3.3)

as y = z
√
N → ∞ as N → ∞ for fixed z. In this section, we want to determine the first

correction to this dominant term.
However the partition function ZN and thus the cumulative distribution (cdf) of λmax

is a product of all the hns for 0 ≤ n < N . Our expansion will thus give us the behaviour
of the cdf of λmax for large N only if we can show that it is valid not only for fixed n
but also for n of order up to N . This constraint of validity will be discussed later. We
will see that this expansion is actually valid only on the right of the mean value, i.e. for
y >
√

2N/α or equivalently z >
√

2/α. This method allows us to describe the right tail

of the large deviation of the distribution of λmax, i.e. P(λmax = t) with t >
√

2N/α and

|t−√2N/α| ≈ O(
√
N).

4.1. Expansion of Rn and Sn

Let us start by expanding the initial conditions for large N . With the scaling y = z
√
N

with z ≈ O(1), equations (43) become (for z > 0) for large N :

h0(z
√
N,α) ≈

√
π

α
− 1

2zα
√
N

e−Nαz
2

+ · · ·

S0(z
√
N,α) ≈ − 1

2
√
απ

e−Nαz
2

R1(z
√
N,α) ≈ 1

2α
− z

√
N

2
√
απ

e−Nαz
2

(47)

The dominant term for large N corresponds to the limit y → ∞ (see section 3):√
π/α =

∫ +∞
−∞ dλ e−αλ

2
= h0(∞, α). Therefore, ignoring the exponentially small correction

for large N leads to Rn(z
√
N,α) ≈ Rn(∞, α) = n/(2α) and Sn(z

√
N,α) ≈ 0.

We want to determine the first correction for large N . Let us make the following
ansatz:

Rn(z
√
N,α) ≈ n

2α
+ cne

−Nαz2 and Sn(z
√
N,α) ≈ dn e−Nαz

2

(48)

where cn = cn(z
√
N,α) and dn = dn(z

√
N,α) are expected to be polynomials of z

√
N .

This will be valid as long as cn(y, α)e−Nαz
2  n/(2α), where y = z

√
N .

The initial conditions in equation (47) give:

c0(y, α) = 0, c1(y, α) = − y

2
√
απ

and d0(y, α) = − 1

2
√
απ

. (49)

Let us replace Rn and Sn in the recursion equations (41) and (42) by the ansatz in
equation (48). We see that S2

n and S2
n−1 are actually negligible in the equation (41) giving

Rn+1, as they are exponentially smaller than the Rks. We thus get recursion relations for
the coefficients cn(y, α) and dn(y, α):

cn+1 − cn−1 =
2

n

{

−∂ (αcn)

∂α
+ αy2cn

}

dn − dn−1 =

(

2αycn − ∂cn
∂y

)
1

n
(50)

hn is the product of the Rk, it can thus be expressed in terms of ck. As ZN is a function of
the hns, it is thus a function of h0 and the Rns for 1 ≤ n < N , we can use the ansatz (48)

doi:10.1088/1742-5468/2011/04/P04001 17

http://dx.doi.org/10.1088/1742-5468/2011/04/P04001


J.S
tat.M

ech.
(2011)

P
04001

A simple derivation of the Tracy–Widom distribution for Gaussian unitary random matrices

only if cn(z
√
N,α)e−Nαz

2  n/(2α) for all n < N . In this case we can write:

lnhn(y, α) = lnh0 +

n∑

k=1

lnRk ≈ lnh0 +

n∑

k=1

[

ln

(
k

2α

)

+
2αck
k

e−Nαz
2

]

≈ lnhn(∞, α) +

[

− 1

2y
√
π

+

n∑

k=1

2αck(y, α)

k

]

e−Nαz
2

(51)

where y = z
√
N , and lnZN(y, α) =

∑N−1
n=0 lnhn(y, α) is thus given by

lnZN(y, α) ≈ lnZN(∞, α) +

[

− N

2y
√
π

+

N−1∑

n=0

n∑

k=1

2αck(y, α)

k

]

e−Nαz
2

. (52)

The partition function only depends on the cks. We want now to solve the recursion
relation for the cks in equation (50). We do not need to determine the dks.

4.2. Solution of the recursion for the cn

Let us define ξ and Gn such that:

ξ = αy2 = Nαz2 and cn(y, α) = − y2

2
√
πξ
Gn(ξ) (53)

ξ is large for large N (proportional to N). Gn(ξ) depends only on ξ = αy2. This can easily
be shown by recurrence with initial condition G1(ξ) = 1 (as c1 is given by equation (49)).
The recursion (50) for the cns becomes

Gn+1(ξ) −Gn−1(ξ) =
2

n

{(

ξ − 1

2

)

Gn(ξ) + ξ G′
n(ξ)

}

(54)

with initial condition G0(ξ) = 0 and G1(ξ) = 1. By recurrence again, it is easy to show
that Gn(ξ) is a polynomial of ξ of degree (n− 1), with leading coefficient 2n−1/(n− 1)!.

Let us consider the generating function of the {Gn(ξ)}:

F (ξ, x) =
∞∑

n=1

xnGn(ξ). (55)

The Gn(ξ) are obtained from F by a contour integration:

Gn(ξ) =

∮

C

dx

2iπ

1

xn+1
F (ξ, x) (56)

where C is a contour in the complex plane that encircles the origin x = 0 in such a way
that all singularities of F (ξ, x) (as a function of x for fixed ξ) are outside the contour.

From equation (54) and the definition of F , we deduce that F (ξ, x) satisfies the
following partial differential equation:

(1 − x2)
∂F

∂x
+ 2ξ

∂F

∂ξ
=

[

x+
1

x
+ 2ξ − 1

]

F. (57)
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This equation together with the requirement that F (ξ, x) ≈ x + O(x2) as x → 0 (as
G1 = 1) determines uniquely F (ξ, x). We find:

F (ξ, x) =
x

(1 + x)
√

1 − x2
e2ξx/(x+1) (58)

Gn(ξ) is given by the contour integral in equation (56) where the contour C encircles
x = 0 in such a way that x = 1 and −1 are outside of the contour.

Let us compute Gn(ξ) with ξ = Nαz2 for large N , fixed z and n = cN with fixed
0 < c ≤ 1. We have

Gn(ξ) =

∮

C

dx

2iπ

1

xn+1
F (ξ, x) =

∮

C

dx

2iπ

eNΦc(x)

(1 + x)
√

1 − x2
(59)

where

Φc(x) =
2αz2x

x+ 1
− c lnx with c =

n

N
(60)

is of order one for large N when n = cN with c of order one. For fixed c ≤ 1 and for large
N , the contour integral can thus be computed using a saddle point method. The integral
will be dominated by the neighbourhood of x∗ such that:

dΦc

dx

∣
∣
∣
x∗

= 0 i.e.
2αz2

(1 + x∗)2
=

n

Nx∗
=

c

x∗
. (61)

There exists a real solution for x∗ iff z2 > 2c/α, i.e. z2 > 2n/(αN). We want this condition

to be satisfied for all n < N , therefore we must have z2 > 2/α, i.e. z >
√

2/α. Our method

can only describe the regime z >
√

2/α, i.e. y >
√

2N/α, which corresponds to the right
tail of the distribution P (λmax ≤ y) (region where λmax is above its mean value). Let us

call the critical point ycr =
√

2N/α, i.e. zcr =
√

2/α.

For y > ycr, there are two real solutions x∗ = −1 + (Nαz2/n)[1 ±√1 − 2n/(Nαz2)].
The contour C must encircle 0 but not 1 and −1, therefore we impose −1 < x∗ < 1. This
implies

x∗ = −1 +
Nαz2

n

[

1 −
√

1 − 2n

Nαz2

]

=
Nαz2

2n

[

1 −
√

1 − 2n

Nαz2

]2

= −1 +
ξ

n

[

1 −
√

1 − 2n

ξ

]

=
ξ

2n

[

1 −
√

1 − 2n

ξ

]2

. (62)

Thus

Φc(x
∗) = αz2

[

1 −
√

1 − 2c

αz2

]

− 2c ln

{√
αz2

2c
−
√
αz2

2c
− 1

}

. (63)

The saddle point gives for large N :

Gn(ξ) ≈ 1

2π

eNΦc(x∗)

(1 + x∗)
√

1 − x∗2

√
2π

N |d2Φc/dx2|x∗| (64)
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where
∣
∣
∣
∣
d2Φc

dx2

∣
∣
∣
x∗

∣
∣
∣
∣ =

4
√

(αz2/c) − 2

(
√

(αz2/c) − 2 −√αz2/c)4
√
αz2/c

.

In this subsection we have found, as given in equation (64), the expression of Gn(ξ) and
thus the solution cn(y, α) = −y2/(2

√
πξ) Gn(ξ) (with ξ = Nαz2 = αy2) of the recursion

relation (50) for large N and n = cN with fixed 0 < c ≤ 1. We have also shown that the

validity of our approximation is the regime y > ycr with ycr =
√

2N/α = 〈λmax〉.

4.3. Computation of the distribution of λmax for large N

We want to compute for large N and for y > ycr (with the scaling y = z
√
N for large N)

the cdf PN(λmax ≤ y) = ZN(y, α)/ZN(∞, α). Using equation (52) and the definition of
Gn in equation (53), we get:

ln PN(λmax ≤ y) = lnZN(y, α)− lnZN(∞, α)

≈ − e−ξ

2
√
πξ

{

1 + 2ξ

N−1∑

n=1

(
N − n

n

)

Gn(ξ)

}

. (65)

Therefore we need to compute IN(ξ) ≡∑N−1
n=1 ((N − n)/n)Gn(ξ) for largeN and ξ = Nαz2

(with fixed α and z). For that purpose, we do not actually need to use the approximate
expression of Gn for n of order N that we derived in section 4.2. We can use the formal
expression of Gn as a contour integral Gn(ξ) =

∮

C dx/(2iπ)(1/xn+1)F (ξ, x) and compute
the sum over n before computing the integral by the saddle point method. In particular
we have:

N−1∑

n=1

Gn(ξ) =

∮

C

dx

2iπ

F (ξ, x)

x(x− 1)
+

∮

C

dx

2iπ

F (ξ, x)

xN (1 − x)
=

∮

C

dx

2iπ

F (ξ, x)

xN(1 − x)
.

The function F (ξ, x)/[x(x− 1)] = (1/[(x2 − 1)
√

1 − x2]) e2ξx/(x+1) has indeed no
singularity at the origin, its integral is thus zero. On the other hand, we have:

N−1∑

n=1

Gn(ξ)

n
=

∮

C

dx

2iπ

(
N−1∑

n=1

1

nxn+1

)

F (ξ, x) =

∮

C

dx

2iπ

F (ξ, x)

xN
2F1(1, 1 −N, 2 −N, x)

N − 1

where 2F1 is a hypergeometric function: 2F1(a, b, c, z) =
∑

k≥0((a)k(b)k/(c)k)z
k/k! with

(a)k = a(a + 1) · · · (a+ k − 1). For large N , we find:

2F1(1, 1 −N, 2 −N, x)

N − 1
=
∑

k≥0

xk

−1 − k +N
≈
∑

k≥0

xk
(

1

N
+

1 − k

N2
+ · · ·

)

≈ 1

N(1 − x)
+

1

(1 − x)2N2
+ · · · .

Therefore we get for large N

IN(ξ) =
N−1∑

n=1

(
N − n

n

)

Gn(ξ) ≈ 1

N

∮

C

dx

2iπ

F (ξ, x)

xN (1 − x)2
+ · · · . (66)
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Equivalently we can write:

IN(ξ) ≈ 1

N

∮

C

dx

2iπ

x

(1 + x)3/2(1 − x)5/2
eNΦ1(x) (67)

where Φ1(x) = (2αz2x/[x+ 1]) − ln x (see (60)). For large N , the saddle point method
thus gives

IN(ξ) ≈ 1

N

1

2π

x∗

(1 + x∗)3/2(1 − x∗)5/2
eNΦ1(x∗)

√
2π

N |d2Φc/dx2|x∗| (68)

where x∗ is given in equation (62) with n = N :

x∗ = −1 + αz2

[

1 −
√

1 − 2

αz2

]

=
αz2

2

[

1 −
√

1 − 2

αz2

]2

. (69)

Thus we find

IN(ξ) ≈ 1

N3/2

1√
2π

1

4
√
αz2(αz2 − 2)3/2

eNΦ1(x∗) (70)

with

Φ1(x
∗) = αz2

[

1 −
√

1 − 2

αz2

]

− 2 ln

{√
αz2

2
−
√
αz2

2
− 1

}

. (71)

Therefore

ln PN(λmax ≤ y) = lnZN(y, α)− lnZN(∞, α)

≈ − e−ξ

2
√
πξ

{1 + 2ξIN(ξ)}

≈ − e−Nαz
2

2
√
πNαz2

{

1 +

√
αz2

√
N2

√
2π(αz2 − 2)3/2

eNΦ1(x∗)

}

.

As Φ1(x
∗) > 0 for z > zcr, i.e. αz2 > 2, the first term in the parentheses can be neglected

for large N :

ln PN(λmax ≤ y) ≈ −e−Nαz
2

4πN

1√
2(αz2 − 2)3/2

eNΦ1(x∗) (72)

with y = z
√
N . Therefore we get the expression of the right tail of the cdf of λmax:

ln PN(λmax ≤ z
√
N) ≈ − 1

4πN
√

2(αz2 − 2)3/2
e−2Nψ+(z) for z >

√
2

α
(73)

where the rate function ψ+(z) = (αz2 − Φ1(x
∗))/2 is given by:

ψ+(z) =
αz2

2

[√

1 − 2

αz2

]

+ ln

{√
αz2

2
−
√
αz2

2
− 1

}

. (74)

We have thus found

PN(λmax ≤ z
√
N) ≈ 1 − 1

4πN
√

2(αz2 − 2)3/2
e−2Nψ+(z) for z >

√
2

α
. (75)
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Deriving with respect to t = z
√
N we get an equivalent of the probability density function

of λmax for large N :

P(λmax = t) ≈
√
αN

2π
√

2 (αt2 − 2N)
e−2Nψ+(t/

√
N) for t >

√
2N

α
,

∣
∣
∣
∣
∣
t−
√

2N

α

∣
∣
∣
∣
∣
≈ O(

√
N). (76)

We thus recover the dominant order for large N (given by ψ+(z)) that was derived in [35]
by a Coulomb gas method, but in addition this method also provides us with the first
correction term to the dominant order.

Let us now see how this precise right tail large deviation behaviour in (75) behaves

when z → √
2/α from the right. Using the leading expansion of ψ+(z) around

z =
√

2 in (17) and setting y =
√

2N/α + N−1/6(x/
√

2α), i.e., z = y/
√
N =

√
2/α+N−2/3(x/

√
2α) one finds from (75)

PN(λmax ≤ y) ≈ 1 − 1

16πx3/2
e−(4/3)x3/2

. (77)

On the other hand, using the boundary condition q(z) ≈ Ai(z) ≈ (1/[2
√
πz1/4])e−(2/3)z3/2

as z → ∞ in the definition of the Tracy–Widom function (8), one can easily derive the

precise leading asymptotics of its right tail, F2(x) ≈ 1−(1/[16πx3/2]) e−(4/3)x3/2
as x→ ∞.

Thus, our right large deviation function for small argument (when the fluctuation of λmax

to the right of its mean value
√

2N/α is of O(N−1/6)) in (77), matches smoothly with the
precise right tail of the Tracy–Widom distribution F2(x).

5. Double scaling limit and Tracy–Widom distribution

In this section, we provide an elementary derivation of the Tracy–Widom law for the
GUE based on simple scaling analysis of the recursion relations derived in section 2 in
the vicinity of the critical point y = ycr =

√
2N/α. This derivation, in our opinion, is

mathematically simpler than the original derivation by Tracy and Widom [6, 7] as it avoids
the sophisticated asymptotic analysis of Fredholm determinants. The derivation of the
Painlevé II equation from the scaling analysis of recursion relations that we follow here is
similar in spirit (though rather different in details) to the analysis of the partition function
in the two-dimensional Yang–Mills theory on a sphere by Gross and Matytsin [39].

Let us recall that the Tracy–Widom distribution F2(x) is defined as

F2(x) = exp

{

−
∫ ∞

x

ds (s− x)q2(s)

}

(78)

where q(x) satisfies the Painlevé II equation with the boundary condition

q′′(x) = 2q3(x) + xq(x) Painlevé II

q(x) ≈ 1

2
√
πx1/4

e−(2/3)x3/2

as x→ ∞.
(79)

From equation (78), it follows that d2 lnF2(x)/dx
2 = −q2(x).

doi:10.1088/1742-5468/2011/04/P04001 22

http://dx.doi.org/10.1088/1742-5468/2011/04/P04001


J.S
tat.M

ech.
(2011)

P
04001

A simple derivation of the Tracy–Widom distribution for Gaussian unitary random matrices

We want to show that for large N the probability of small typical fluctuations of λmax

around its mean value
√

2N/α are described by the Tracy–Widom distribution. For this,
we need to first estimate how do these typical fluctuations scale with N for large N . In
the vicinity of the mean

√
2N/α, let us then write

λmax ≈
√

2N

α
+

1√
2α

Nγ x (80)

where Nγ is the scale of the typical fluctuation and the random variable x has an N
independent distribution for large N . Evidently the exponent γ < 1/2 (so that the
fluctuation is less than the mean) whose precise value is yet to be determined. Note also
that since λmax always appears in the distribution PN(λmax ≤ y) in the scaling combination
y
√
α (see equation (30)), we have chosen the prefactor of the fluctuation term as 1/

√
2α,

which then ensures that the random variable x describing the typical fluctuation is also
independent of α.

One way to estimate the exponent γ is from the right large deviation tail computed
in (75) in section 4. The right tail in (75) describes the probability of large fluctuations of

O(
√
N) to the right of the mean. Assuming that the right tail behaviour continues to hold

even for fluctuations smaller than
√
N , we substitute z

√
N =

√
(2N/α) + (1/

√
2α)Nγx

in (75). This gives

PN

(

λmax ≤
√

2N

α
+

1√
2α

Nγ x

)

≈ 1 − 1

N (1/4)+(3γ/2)

1

16πx3/2
e−(4/3)x3/2N(3γ/2)+1/4

(81)

valid for x > 0, x large. Assuming that this continues to hold even for not so large x (so
that it even captures the tail of the distribution of typical small fluctuations), we expect
that in terms of this rescaled variable x, the tail of the distribution in (81) is independent
of N for large N . Clearly, for this to happen the power of N must be zero both inside the
exponential as well as in the prefactor in (81), indicating that (1/4) + (3γ/2) = 0, thus
γ = −1/6. Hence, the correct scaling describing typical fluctuations, for large N , is given
by

λmax =

√
2N

α
+

1√
2α

N−1/6 x (82)

where x has an N independent distribution that we now have to compute and show that
it is given by the Tracy–Widom function F2(x).

The meaning of the double scaling limit is now clear. It simply says the following.
Consider the cdf PN(λmax ≤ y) or rather its logarithm (for convenience) ln PN(λmax ≤ y).
In general, it is a function of two variables y and N . However, in the vicinity of the mean
y →√2N/α, if one takes the limit y−√2N/α→ 0 and N → ∞, but keeping the scaling

combination x =
√

2αN1/6 (y −√2N/α) fixed, this function of two variables collapses
into a function of the single scaled variable x

ln PN(λmax ≤ y) → f

(√
2αN1/6

(

y −
√

2N

α

))

(83)

and our job is to show that this scaling function f(x) = lnF2(x), where F2(x) is the Tracy–
Widom function defined in (78). In other words, we want to show that f ′′(x) = −q2(x)
where q(x) satisfies the Painlevé II equation (79).
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Our starting point is the definition of the cdf in (28). From equation (36) it is easy
to see that the partition function ZN satisfies the recursion

ZN−1(y, α)ZN+1(y, α)

Z2
N(y, α)

=
hN(y, α)

hN−1(y, α)
= RN (y, α). (84)

Taking the logarithm and using the definition in (28) we get

ln PN+1(λmax ≤ y) + ln PN−1(λmax ≤ y) − 2 ln PN (λmax ≤ y) = ln

(
RN (y, α)

RN (∞, α)

)

. (85)

In the double scaling limit, we will now substitute the anticipated scaling form in (83)
for the logarithm of the cdf on the left-hand side of (85). But we need to first evaluate
ln PN±1(λmax ≤ y). Replacing N by N ± 1 in (83) and expanding for large N , with

x =
√

2αN1/6 (y −√2N/α) fixed, we get

ln PN±1 (λmax ≤ y) = f

(√
2α (N ± 1)1/6

(

y −
√

2(N ± 1)

α

))

= f

(

x∓N−1/3 ± x

6N
± N−4/3

12
+ · · ·

)

= f(x) ∓N−1/3f ′(x) +
N−2/3

2
f ′′(x) + O(N−1). (86)

Substituting this result in (85) we get for the left-hand side

ln PN+1(λmax ≤ y) + ln PN−1(λmax ≤ y) − 2 ln PN (λmax ≤ y)

≈ N−2/3 f ′′(x) + O(N−1). (87)

From equations (85) and (87), we get for large N

N−2/3 f ′′(x) ≈ ln

(
RN(y, α)

RN(∞, α)

)

≈ ln

(
RN (y, α)

N/(2α)

)

(88)

as RN(∞, α) = N/(2α) (see equation (44)). This suggests that in this scaling limit, RN

must scale as RN(y, α) ≈ (N/2α)(1 +N−2/3 f ′′(x) + · · ·). More precisely, this leads us to
the following large N expansion of RN(y, α) in the double scaling limit

RN (y, α) ≈ N

2α

(
1 +N−2/3 r1(x) +N−1r2(x) +N−4/3r3(x) + · · ·) , (89)

where

f ′′(x) = r1(x) (90)

and r2(x), r3(x) etc describing the higher order scaling corrections. Thus, if we can now
determine the first subleading scaling function r1(x) in the expansion of RN(y, α), then
we can determine f(x) by integrating r1(x) twice. So, our next task is to determine r1(x)
by analysing the recursion relations (41) and (42) (setting n = N) in the double scaling
limit.

We now know, from (89), how RN(y, α) behaves in the scaling limit with the scaling

combination x =
√

2αN1/6 (y − √2N/α) fixed. In order to analyse the recursion
relations (41) and (42), we also need to know how SN(y, α) behaves in this scaling limit.
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In order to match the leading N behaviour of RN(y, α) with x fixed in (42), it is not
difficult to see that to leading order for large N , SN(y, α) must have the following scaling
behaviour

SN(y, α) ≈ N−1/6

√
2α

s1

(√
2αN1/6

(

y −
√

2N

α

))

+ O(N−1/2) (91)

where s1(x) is the leading order scaling function. Let us first evaluate the difference
SN−1(y, α)−SN(y, α) that appears in (42). Replacing N by N − 1 in (91), expanding for
large N , we get

SN−1(y, α)− SN(y, α) ≈ N−1/2

√
2α

s′1(x) + O(N−5/6). (92)

It rests to evaluate the partial derivative ∂ lnRN(y, α)/∂y in (42). From the definition of

the scaling variable x =
√

2αN1/6 (y −√2N/α), it follows, using the chain rule,

∂ lnRN(y, α)

∂y
=
∂ lnRN(y, α)

∂x

∂x

∂y

=
√

2αN1/6 ∂ lnRN (y, α)

∂x

=
√

2αN−1/2 r′1(x) + O(N−5/6). (93)

Finally substituting (92) and (93) in (42) (with n = N) we get

√
2α
(
r′1(x)N

−1/2 + O(N−5/6)
) ≈ ∂ lnRN

∂y
= 2α(SN−1 − SN)

≈
√

2α
(
N−1/2s′1(x) + O(N−5/6))

)
.

Matching the leading order N−1/2 term gives a relation between s1(x) and r1(x): s
′
1(x) =

r′1(x), i.e., s1(x) = r1(x)+c0 with c0 a constant. From (44) and the fact that when y → ∞,
x→ ∞, it follows that both the scaling functions r1(x) and s1(x) must vanish as x→ ∞.
Thus the constant c0 = 0 and we have, for all x,

r1(x) = s1(x). (94)

Having determined the relation r1(x) = s1(x), we need one more rela-
tion between these two scaling functions in order to determine them individu-
ally. This will now be done by substituting the scaling solutions for RN (y, α)
(given in (89)) and SN (y, α) (given in (91)) into the remaining recursion rela-
tion (41).

To analyse (41) (setting n = N), we need to evaluate the derivative ∂ lnRN(y, α)/∂α.

From the definition of the scaling variable, x =
√

2αN1/6 (y −√2N/α), it follows that

∂x/∂α = x/(2α) + (N2/3/α). We then use the chain rule and (89) to express

∂ lnRN(y, α)

∂α
=
r′1(x) − 1

α
+
N−1/3

α
r′2(x) +

N−2/3

2α
[xr′1(x) − 2r1(x)r

′
1(x) + 2r′3(x)] + · · · .
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Again replacing N by N±1 in (89) and expanding for large N , keeping x =
√

2αN1/6 (y−√
2N/α) fixed, we get

RN−1 − RN+1 ≈ r′1(x) − 1

α
+
N−1/3

α
r′2(x)

+
N−2/3

6α
[−2r1(x) − xr′1(x) + 6r′3(x) + r′′′1 (x)] + · · ·

and similarly from (91)

S2
N−1 − S2

N ≈ N−2/3

α
s1(x)s

′
1(x) + · · · .

Substituting these results in (41) and matching the leading order term (O(N−2/3)), we
get the desired second relation between r1(x) and s1(x)

xr′1(x) − 2r1(x)r
′
1(x) = −2

3
r1(x) − x

3
r′1(x) +

1

3
r′′′1 (x) + 2s1(x)s

′
1(x).

Eliminating s1(x) by using s1(x) = r1(x) we finally get a single closed equation for
r1(x)

2xr′1(x) + r1(x) = 1
2
r′′′1 (x) + 6r1(x)r

′
1(x). (95)

Let us write

r1(x) = −u2(x). (96)

Equation (95) then becomes an equation for u(x):

u(u′′′ − 6u2u′ − xu′ − u) = −3u′(u′′ − xu− 2u3). (97)

Let W (x) = u′′(x) − xu(x) − 2u3(x). Then (97) becomes

u(x)
dW (x)

dx
= −3u′(x)W (x) (98)

which can simply be integrated to give

W (x) =
A

u(x)3
(99)

where A is an arbitrary constant. Hence we have

u′′(x) − xu(x) − 2u3(x) =
A

u(x)3
. (100)

From the boundary condition r1(x) → 0 as x → ∞ (which follows from (44)),
it follows using r1(x) = u2(x) that u(x) → 0 as x → ∞. Taking x →
∞ in (100) then fixes the value of the constant A = 0. Finally, from (90),
we have f ′′(x) = r1(x) = −u2(x), where u(x) satisfies the Painlevé II equation

u′′(x) = xu(x) + 2 u3(x). (101)

To fix the boundary condition for u(x), we again invoke the matching with the
right large deviation tail in (81). Taking logarithm of (81) with γ = −1/6 and using
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ln PN(λmax ≤ y, α) = f(x) we find that

f(x) ≈ − 1

16πx3/2
e−(4/3)x3/2

as x→ ∞. (102)

Hence u2(x) = −f ′′(x) ≈ e−(4/3)x3/2
/(4π

√
x) and consequently as x→ ∞

u(x) =
√

−f ′′(x) ≈ e−(2/3)x3/2 1

2
√
πx1/4

. (103)

Finally integrating f ′′(x) twice and using the appropriate boundary condition as
x→ ∞, we get

f(x) = −
∫ ∞

x

ds (s− x)u2(s) (104)

where u(x) satisfies the Painlevé II equation (101) with the boundary condition (103).
Comparing to (78), we have thus shown that the scaling function f(x) = lnF2(x), where
F2(x) is the Tracy–Widom function (β = 2). This then constitutes our derivation for the
Tracy–Widom distribution for the GUE (β = 2).

Using recursion relations that we have derived for orthogonal polynomials on a semi-
infinite interval, we have shown that the large N asymptotics of the distribution of the
maximal eigenvalue of a Gaussian random matrix (from the GUE) is described in the
double scaling regime by the Painlevé II equation. Similar recursion relations for other
orthogonal polynomials leading to different kinds of Painlevé equations have also been
established in a number of papers, see [49] and references therein, in particular [50, 46, 47].

6. Conclusion

In this paper, we have provided a rather simple and pedestrian derivation of the Tracy–
Widom law for the distribution of the largest eigenvalue of a Gaussian unitary random
matrix. This was done by suitably adapting a method of orthogonal polynomials
developed by Gross and Matytsin [39] in the context of two-dimensional Yang–Mills
theory. Our derivation requires just elementary asymptotic scaling analysis of a pair
of coupled nonlinear recursion relations. Strictly in the N → ∞ limit, there is a third
order phase transition in the form of the probability distribution of λmax as λmax crosses
its mean value from left to right. For finite but large N , the two regions are connected
by a smooth crossover function and the shape of this crossover function is precisely the
Tracy–Widom distribution that describes the ‘typical’ small fluctuations of λmax around
its mean. The ‘atypical’ large fluctuations to the left and right of the mean are described
by large deviation tails that correspond to the two ‘phases’ across this phase transition.
In qualitative analogy to the two-dimensional Yang–Mills theory, the left (left large
deviation) and the right (right large deviation) phases correspond respectively to the
‘strong’ and ‘weak’ coupling phases of the two-dimensional QCD. Apart from the simple
derivation of the Tracy–Widom GUE law, we were also able to compute the precise right
large deviation tail of the maximal eigenvalue distribution that is not described by the
Tracy–Widom distribution. In the language of QCD, these right tail corrections are similar
to the non-perturbative (in 1/N expansion) corrections to the QCD partition function in
2d [39].
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One drawback of our method is that it works only for the GUE case (with Dyson
index β = 2). It would be challenging to see if this method can be extended/generalized
to derive the Tracy–Widom law for the other two Gaussian ensembles, namely the GOE
(β = 1) and the GSE (β = 4). In addition, this method for β = 2 should be useful
to compute the largest eigenvalue distribution for other non-Gaussian matrix ensembles,
such as the Laguerre (Wishart matrices) or the Jacobi ensembles.
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