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Exact phase diagram of a model with aggregation and chipping
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We reexamine a simple lattice model of aggregation in which masses diffuse and coalesce upon contact with
rate 1 and every nonzero mass chips off a single unit of mass and adds it to a randomly chosen neighbor with
ratew. The dynamics conserves the average mass demsityd in the stationary state the system undergoes a
nonequilibrium phase transition in the-fv) plane across a critical ling.(w). In this paper, we show
analytically that in arbitrary spatial dimensiopg(w) = yw+1—1 exactly and hence, remarkably, is indepen-
dent of dimension. We also provide direct and indirect numerical evidence that strongly suggests that the mean
field asymptotic results for the single site mass distribution function and the associated critical exponents are
superuniversal, i.e., independent of dimension.
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I. INTRODUCTION context of a traffic model with passifd7]. Related models
of fragmentation and diffusion have been studieflia—20.
Nonequilibrium phase transitiofi$] occur in various sys- The undirected CM is defined ondadimensional hyper-

tems including heterogeneous catalyg?§, chemical reac- cubic lattice with periodic boundary conditions. Starting
tion models[3], polynuclear growth modelg4], monomer- from a random distribution of non-negative integer masses at
dimer models [5], models of fungal growth[6], €ach lattice site, the system evolves in continuous time via
nonequilibrium kinetic Ising modelg7], and branching an- the following microscopic processes. In an infinitesimal time
nihilating random walkg8]. A common feature in all the interval At, (i) with probability At, the mass at each site
above is that the transition is from a state that has no activitjiops to one of its neighboring sites, chosen at randan,

to one that has continued activity. Such transitions are welvith probability wAt, a unit mass is chipped off from an
characterized by the critical exponents of directed percola@lready existing mass at each site and added to one of the
tion (DP), parity conserving, or DP2 universality classes.neighboring sites, again chosen at random, &iid with
There are other nonequilibrium models that undergo phaserobability [1—(1+w)At], each mass stays at its original
transitions which do not belong to the above universalitySite. Following the stepg)—(iii), the masses at any given
classes. These include boundary driven phase transfigjns Site are added up. Since this system is closed to the environ-
and models whose steady states undergo a depinning or ufent (periodic boundary condition the total mass is con-
binding transition[10—13. Recently, a simple lattice model served by the dynamics. Thus, there are two parameters in
where masses diffuse, aggregate on contact, and also chip dffe problem, the average mass per pitend the ratio of the

a single unit of mass was studi¢d4,15. This chipping chipping rate to the rate of hopping as a whete|n the long
model (CM) exhibits a nonequilibrium phase transition time limit, the system evolves into a time independent steady
[14,15 in its steady state from a phase in whichiafinite ~ State. The steady state single site mass distribution function
aggregate is present to one that has none. This nonequilif®(m), i.e., the probability that a site has masswhen t

rium phase transition is in a completely different universality—, was shown to undergo a phase transition in ghes
class from the other models studied in the literature and merplane[14,15. There is a critical ling¢(w) in the p-w plane
tioned above. The mathematical mechanism giving rise téhat separates two types of asymptotic behavid? @f). For

the formation of the infinite aggregate at the onset of thdixed w, asp is varied across the critical valyg,(w), the
phase transition was found to be very similar to that of thdargem behavior ofP(m) was found to be

equilibrium Bose-Einstein condensation in an ideal Bose gas.

The difference is that in the CM the infinite aggregate or g~mm* p<pc(W)

condensate forms in real space as opposed to the Bose gas
where the condensation takes place in momentum space. In
addition, the phase transition in the CM occurs even in one m~ "+ infinite aggregate, p>pc(W).
dimension as opposed to the Bose gas where the condensa-

tion occurs in two and higher dimensions. A slightly differ- Thus, the tail of the mass distribution changes from an ex-
ent off-lattice version of the CM was studied earlier within ponential decay to an algebraic decay mapproachegp,

the rate equation approach in the context of aggregation ifrom below. As one increasgsbeyondp., this asymptotic
dry environment$16]. A directed version of the CM where algebraic part of the critical distribution remains unchanged
masses move asymmetrically only along one direction wabut in addition an infinite aggregate forms. This means that
studied in Ref[15] and its critical properties were found to all the additional massp(—p¢)V (whereV is the volume of
belong to a different universality class from that of the un-the systemcondenses onto a single site and does not disturb
directed CM. This directed CM also appeared recently in théhe background critical distribution. This is analogous, in

P(m)~{ m™7", p=pc(w) )
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spirit, to the condensation of a macroscopic number oplane across a critical ling.(w) in all dimensions. In this
bosons onto the single=0 mode in an ideal Bose gas as the section, we compute.(w) exactly in arbitrary dimensions
temperature goes below a certain critical value. This infiniteby analyzing the two-point equal time mass-mass correlation
tower, i.e., the single site carrying macroscopically largefynction C(x,t)=(m(x,t)m(0,t)). Let 5(x,x’,t) denote the
(proportional to volumg mass, is mobile. Mathematically mass transferred from a siteto a neighboring site’ in the
this means that forp>pc(w) P(m)~m "+(1NV)3(M  time interval between andt+At. Clearly, 7(x,x',t) is a

—aV) wherea=p—p.. This lasté-function peak contrib-  rangom variable that takes the values
utes only to order ¥ in the integralf P(m)dm, indicating

that the aggregate is contained in thermodynamically fewy(x,x’,t)
sites(indeed, a single sijéut contributes a finite amoumnt

in the integralf mP(m)dm even in the thermodynamic limit m(x)  with probability (1/2d)At
V—e. _ . —{ 1= 800 With probability (1/2d)wAt
These results were found both analytically within a mean e N
field approximation, which involved ignoring all correlations 0 with probability 1-[(1+w)/2d]At,
between masses, and numerically in one dimension. Within 2)

the mean field approximation, the locus of the critical line

was found[14] to be p.(w)=+yw+1—-1 and the exponent where 2 is the number of neighbors of any given site. The
7=5/2[14,16. In one dimension, the numerically obtained Kroneckeré function in the second line of E@2) indicates
critical line [14] was found to be close to the mean field that a chipping of a unit mass can take place provided the
phase curve. Even the exponenidetermined from a simple massm(x) is a positive integer bigger than 0. Then, the
linear fit on the log-log plot of data from relatively smaller eyolution of mass at site can be written as

size lattices, was found to be~2.33, rather close to the

mean field exponent 2.5. This raises the question whether or , ,

not the mean field results for asymptotic behavior$¢fn) m(x,t+At)=m(x,t)—Z 7(X,X JHZ 7(x" 1),

are exact even in one dimension. On the other hand, one can X X 3)
show explicitly (see Sec. )Ithat there exist nonzero correla-

tions between masses in any finite dimension, even in th@here the sum is over the neighbots of the sitex. The
thermodynamic limit. Thus, one is confronted with a puzzle.second term on the right hand side of Eg) describes the

_ The purpose of this paper is to shed light on this puzzlingoytflow of mass fromx while the third term accounts for the
issue. We first prove analytically the remarkable result thajhfiow of mass intox from neighboring sites. It is quite

the mean field phase boundgsy(w) = yw+1—1 is indeed  giraightforward to write down the two-point correlator fgr

exactand .independent of the spati.al dimensinThis, of 4 o qerat. Suppressing the explicitdependence iny, we
course, still does not prove, but hints, that the exponrent find

may also be independent df However, we provide rather

unambiguous numerical evidence, in conjunction with sev- 1

eral direct and indirect checks, which suggests that even the {7(xy,X;) 7(X,,X5)) = %[mz(xl)er(l— 5m(x1),o)]
exponent7=>5/2 is superuniversal and independent cbf

Thus, our results seem to suggest strongly that, even though X 8y . Oy y At. (4)
there are nonzero correlations between masses in finite di- 12 e

mensions, these correlations do not affect the asymptotic bgjsing Eqgs.(3) and (4), the evolution equations for the two-
havior of the single site steady state mass distribuom).  point  equal  time  correlation  function C(x,t)
However, the possibility remains that other higher order COr= (m(x,t)m(0,t)) can be written down. Multiplying Eq(3)
relation functions, such as the joint distribution of two py (0 t+dt) and taking the average on both sides, and

massed>(my,m,), will depend on the spatial dimensiah  pytting all time derivatives to zero in the steady state, we get,
The paper is organized as follows. In Sec. Il, we show

analytically that in arbitrary dimensiod the locus of the 1

phase boundary is independentdadind is given by the mean —C(x)+ 2d 2 C(x")
field expressiomp(w)=+\w+1—1. In Sec. Ill, we rederive X
analytically the mean field expression for the mass distribu-

tion P(m) by a method different from that used [ih4] and =w
compare these analytical expressions with the numerical re-

sults obtained in one and two dimensions. In Sec. IV, we do

a finite size scaling analysis that provides additional evi- —[C(0)+ws]
dence that the exponentis superuniversal. Finally, we con-
clude with a summary and discussion in Sec. V.

—D(x)+ % XE D(x’))

1
5X,O_E Xzo 5x,xo) ) (5)

wherex, denotes the neighbors of the slie Also, D(X,t)

=(M(X,t) Smo.t).0)» ANAS=1—( () o) IS the probability of

a site having nonzero mass. Thus, in the CM, the two-point

correlation functions do not form a closed set of equations,
As mentioned in the Introduction, the steady state of thenaking it difficult to solve forC(x,t) exactly. This is unlike

CM undergoes a phase transition in its parameter space ( many other models where two-point correlations do form a

II. EXACT PHASE DIAGRAM
IN ARBITRARY DIMENSIONS
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closed set of equations and hence are solvable. A few exFor p<p,, sis given by Eq.(9). As p increases from 0 to

amples include the one-dimensiondD) Glauber model , () (for fixed w), s increases monotonically according to
[21], asymmetric random average proces$&s,2(, the Eq. (9) up to the values, given by
Takayasu model of aggregatid@2], and theq model of ¢
force fluctuations in bead pack&2,23. A+w—1
Remarkably, however, Eg5) allows for the solution sc=—w.
Vi+w+1

For p>p.(w), s does not increase any further and sticks to
This solution is also the unique solution. To see this, observgs values,. Puttings=s. in Eq. (7) and using the expres-
that the homogeneous part of £§) is the Laplace equation sjon of s, from Eq. (11), we get forp> p(w)
VZ[C(x)—wD(x)]=0, with the boundary condition that
C(x)—wD(x) is a constant a$x|— . Since the solution o /m? 5
Eq. (6) satisfies the inhomogeneous part too, as well as the lim <V> =(p=pc)” (12)

V—oo

11
C(x)=w[D(x)—s], x#0. (6)

boundary conditions, it is the unique solution.

Note that the above solution E¢6) is also valid on a
finite lattice. Summing Eq(6) over all x#0 and using the
fact that the conserved total mass is givenXyn(x) =pV
(whereV=LY is the volume of the systexmwe get the exact

Thus, for p>p., (m?) becomes macroscopic, i.e., propor-
tional to volume. Sincs, the fraction of occupied sites, does
not increase any longer fgr>p., this indicates that all the

extra mass d—p.)V condenses onto a thermodynamically

equation negligible number of sitegindeed, a single site onlywith
(m?) density~ 1/V, leading to the macroscopic behavior (ofi®)
PZ_T:Wp(l—S)—WS. 7 ~(AM)[(p—p)VI>~(p—pc)?V. This is similar in spirit,

though not in detail, to the Bose-Einstein condensation,

This equation is reminiscent of Bose-Einstein condensatio¥/Nere below a certain temperature the number of particles in
in an ideal Bose gas. In the low density phase, we expect th&€ k=0 mode also becomes macroscopic. .

the system reaches a stationary state in whiof) is a finite Let us conclude this section by stressing an important
number of orderO(1). Therefore, in the thermodynamic POInt. We note that the mean field soluti@ssuming decou-

limit V—oo, the second term on the left hand side of EA). pling) for the stationary two-point correlation function,
drops out and we get C(x)=p? for x#0 andD(x)=p(1—s) for x+0 with s sat-

isfying Eqg. (7), is indeed an exact solution of Eq%) and
p’=wp(l—s)—ws. (8) (6). However, this need not be the only stationary solution.
In addition even if the mean field result for the two-point
Note that Eq.(8) could have been obtained from E®) if stationary correlation function is the correct one, it still does
we had assumed that the two-point correlation functions derot prove that the mean field theory is exact. For example,
couple, i.e., C(x)=(m(0)m(x))=(m(0)){m(x))=p? and  one can show that indeed three- and higher point correlation
D(x) =(mM(X) 6m(0).0» = p(1—s). However, there is no reason functions do not decouple. In any case, the main result of this
a priori for the two-point correlations to decouple. Our deri- section, namely, the derivation of the exact phase boundary,

vation of Eq.(8) does not rely on this decoupling. does not rely on whether the correlation functions decouple
From Eq.(8) we get or not.
Wp — 2
s= & (9) I1l. COMPARISON WITH MEAN FIELD THEORY
w(p+1)

In the previous section, we proved that the mean field
According to Eq(9), as one increases the dengitykeeping phase diagram is exact in any dimension. This, of course,
w fixed, the occupation probability first increases wittp, ~ does not prove, but suggests that, perhaps, even the mean
attains a maximum ap=+w+1—1 [obtained by setting field expression for the distributioR(m) may also be as-
ds/dp=0 in Eq. (9)], and then starts decreasing with in- ymptotically exact in all dimensions. In this section, we try
creasingp. However, it is clear thas, the probability that a O provide evidence in favor of this hypothesis. For this we
site has nonzero mass, must be a monotonically nondecreddst rederive the mean field expression fm) and com-
ing function of p. Hence we conclude that E¢g) is valid as ~ pare it _vvith the numerical results obtained in one and two
long asp<p.=w+1—1. Forp>p., the basic assumption dimensions.

(m?)/V—0 asV— = breaks down and Eq9) ceases to be In Ref.[14], the steady state single site mass distribution
valid. function P(m) was computed analytically by assuming that
Thus, the critical density is given by the joint distribution P(m;,m,), the probability that two

consecutive sites have massegandm,, respectively, fac-
pe(W)=1+w—1, (10) torizes, i.e.,P(m;,my)=P(my)P(m,). With this assump-

tion, P(m) was shown to satisfy a closed set of equations
and, remarkably, it is independent @fand not surprisingly, which were then solved via the generating function method,
therefore, coincides with the mean field expresdibh,15.  vyielding the results given in Eq1) with 7=5/2 andp.(w)
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=\w+1-1. In this section, we first rederive the mean field with the boundary conditiong,=1 andY,=P(0)=1-s,
results by a different method that requires fewer restrictionghe probability of having no mass at any given site.
than the product measure used in Hé#]. If we now make the assumption th&(m;+---+m,
Here we use a technique used before for solving the mass m,0)=P(m;+--- +m,=m)P(0), i.e., Y,=P(0)Z,,
distribution function in other models of aggregati®4] as  then we get equations that contain only #gs. As men-
well as in thew=0 limit of the CM [25]. We consider the tioned before, this assumption is less strict than the product
CM on a 1D lattice. LeP(m;,m,, ... ,m,) denote the joint measure approximation as it requires the factorization of
probability thatn consecutive sites on the lattice have massesnly a special conditional probability where a site at the
m;, m,, ... ,m,, respectively, in the stationary state. We beginning of a string is empty. In order to determiném),
define two generating functions, we need to computg&;(x) which, by definition in Eq(14),
is the generating function for the(m)’s,

o0 s

Z,= 2, 2:0 XM Py Lo my), (19)

m;=0 m

©

Z(x)= 20 X™P(m). (16)

w % =
Yo= 2 --- > XMt mpimy o m,0). (14)
m1=0 m,=0

SinceZ, depends on othet,’s, we need to solve the full Eq.
Here Z,=(x™"""""™) is an unconditional average b¥i,  (15) for all n. Equation(15) can be solved by the standard
=(xMT "M, s a conditional average where the generating function method. LeB(X,y)=S"_,Z(X)y".
(n+1)th site is conditioned to have 0 mass. Using the dyqultiplying Eq. (15) by y" and summing oven, we get,
namics ofm; [as given by Eq(3)] and following steps simi-  after straightforward algebra,
lar to those used in Ref$24,25, one can write down the
evolution equations far,,. In the steady state, when all time

derivatives go to zero, we get, after some algebra, G(xy) y[wWP(0)y(1—x)—Xxy+XZ1(X)]
X,y)= .
(1-x)2 y X(1—y)2+wy(1—x)?>+wWP(0)y(1—x)(x—Y)
Zos1—2Zp+2Zp 1 +W Z, a7
1-x _ For a fixedx, when considered as a function gfonly,
x Tn-at(d X)Y“)_o’ (15 G(x,y) has two poles,

—2Xx+W(1—X)(1—5X) = (1—X)JwW\w(1—sx)2—4sX

Yi2= 2(1—s)W(1—x)—x)

(18

For a fixedw ands, |y,|<1 for small values ok. This implies thatZ,~|y,| " for large n. However, we cannot have a
diverging probability for large. Hence this pole must be canceled by the numerat@. dhis pole canceling mechanism was
also useful in deriving exact results in other recently studied aggregation nj@6e?g]. Demanding thaG(x,y,) =0, we get
the following expression foZ,(x):

2X—W(1—X)(1—5X) +(1—X)yWyW(1—sx)Z—4sx

Z,(x)= o (19
|
The coefficient ofx™ on the right hand side of E¢19) will and one recovers the results in Ed) with 7=5/2 and
then give the desired distributidd(m). pc(W)=+yw+1—1. However, by expanding the expression

The expression for the generating functiah;(x)  for Z,(x) in Eq. (19) in powers ofx using MATHEMATICA
=37 -oX"P(m) in Eq. (19 is identical to the one derived in we have determine®(m) for all m. In the aggregate phase
[14] using the approximation of the product measure. Thus(p>p.), we sets=s. in Eq. (19) and calculate the distribu-
the two methods, although different in detail, yield the same&ion P(m) by expanding in powers of. In Fig. 1, we com-
P(m) for any mand not just for largen. This result for the pare this analytical mean field answer for ail with the
mean fieldP(m) seems to be extremely robust and does nohumerical results obtained in one and two dimensions in the
depend on the details of how the mean field assumption iaggregate phase$p.). Note that Fig. 1 shows only the
incorporated. power law part of the spectrum. The numerical data are for

The asymptotic properties d?(m) for large m can be V=900 in one dimension and for a 3@0 lattice in two
derived by analyzing the behavior @f(x) nearx=1 [14], dimensions. The two curves for 1D and 2D are almost indis-
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FIG. 1. The power law parts of the steady state mass distribu- FIG. 2. The steady state mass distributions in one and two di-
tions P(m) in one and two dimensions are compared with the mearinensions in the exponential phage<{p.) are compared with the
field result in the aggregate phape-p.. The data are fow=3 mean field result. The data are far=8 andp=1. The critical
andp=10. The critical value ip.=1 for w=3. In the inset panel, Value isp;=2 forw=8.
we show the convergence of the probability distribution to its mean
field value as the system size is increased in one dimension. largest mass inside the power law part is much smaller than

that in the aggregate, we get the inequality 1.
tinguishable from each other. While the numerical data Also, the mass densitymP(m)dm=p is finite. Substi-
match the mean field result excellently for snmallthere isa  tuting Eq.(20) in this integral, it is evident that for largé
small deviation for larger masses. This deviation at lange  the integral will converge provided>2. Also, from Eq.
due to finite size effects. To confirm this, we also did simu-(20), one finds that the second momem?)/V~(p—p.)?
lations for larger lattice sizes up %= 2000 in one dimen- +O(V#CG~ 771 The first term is from the aggregate and
sion. For a fixed mass, we confirmed that the deviation fronthe second term is from the power law part. This is consis-
the mean field decreases with increasingsee the inset in tent with the exact result Eq12) provided that¢(3— 7)
Fig. 1). We also compared the mass distribution in the expo<<1. This provides an upper bound feri.e., 7<<3. Thus, we
nential phased<p.) with the mean field prediction. Again, have the exact bounds fer 2<<7<3. The mean field results
excellent agreement is seésee Fig. 2 These results thus and numerical simulations in 1D and 2D are consistent with
provide strong evidence that the mean field expression fothese bounds.
P(m) is exact in all dimensions and therefore the exponent Next we derive a scaling relation betweerand ¢. This

7=5/2 is also superuniversal, i.e., independent.of is obtained by demanding tha®(m,V) is normalized,
JP(m,V)dm=1. Substituting Eq(20) in this integral, we
IV. FINITE SIZE SCALING AND INDIRECT NUMERICAL get
CHECKS
» 1 m
In this section, we provide further indirect numerical f Wf(w)dmzc_v: (21
m

checks which again strongly suggest that the mean field re-
sult for P(m) is indeed exact. We start by making a reason-yherec is a constant oD(1), andm,~O(1) is the mass

able finite size scaling ansatz fét(m,V) (whereV is the  peyond which the scaling starts holding. Differentiating Eq.
volume of the systeirin the aggregate phage-p. for large  (21) twice with respect to/ and making a change of variable,

m, we arrive at the relation

1 o
|y em=(p=pov), (20 f LyETdy=—(1- vl (22

m|V

1
P(mV)~ —f
mT

where the exponenéd is a crossover exponent and tide  wheref”(y)=d?f/d%y. The reason for double differentiation
function peaked atd— p.)V indicates the aggregate contain- is as follows. Since 2 7<3, one can replace the lower limit
ing a macroscopic amount of mass. The power law part 0bf the integral in Eq(22) by 0 in theV—oe limit and there
the mass distribution is cut off at V¢ for finite V. Since the is no divergence from the lower cutoff. Once the lower cut-
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] target site is empty, while the aggregation move corresponds
] to a particle making a long range jump to the site adjacent to

[u} Numerics

005 [ | . the particle nearest to it. There is a standard procedure to
—— 0.395/Vosess

map a lattice gas configuration to an interface configuration
[26]. Letn;=1 (—1) if a particle is preserfabsenk at sitei.
Then hi=2}=lnj . While the chipping move corresponds to
a local move of the interface, the aggregation move corre-
sponds to a nonlocal move of the interface. The width of this
interface was monitored numericaljt5] as a function of
time t. On the critical linep,(w) of the CM, the width was
found to have the scaling forfii5]

s, (e0)=s, (V)

wW(V,t)~VXf

t
001 - W)' (26)
with y~0.67 andz=~2.0.

We show here that the roughness exponeman be re-
lated to the exponents and ¢ of the CM. We first map the
CM in 1D to an interface model with the height field
=3_,m;. Then(h))=ip and(hf)~i(m?+i(i—1)p? If

FIG. 3. The probability of a site being occupiegl(V), con-  we approximatém;m;) by p? [assuming that the mean field
verges to its asymptotic valug,(«), as a power law, i.e$.() P(m) is exaci, the width is then simplyw?= 1N2iV:1(hi
—s:(V)~ 1958 The data are for lattices in one dimension. —(h;))2~V1*9@-1D=v2x This implies that provided

. _ . (mimj>~p2 one gets the scaling relation
off is replaced by 0, the integral on the left hand side of Eq.

(22) is of O(1). Comparing this with the right hand side of 1
Eq. (22), we immediately arrive at the scaling relation x=5[1+¢(3-7)]. (27

P(7—1)=1. (23 i
If 7=5/2 and¢=2/3, we get from Eq(27) x=2/3, in ex-
If 7=5/2, Eq.(23) would indicate¢=2/3. cellent agreement with the numerical valye=0.67 [15].
We found that the cleanest way to measure the exponerthis is further evidence for=5/2 and¢=2/3.
¢ is by the following indirect finite size method. On a finite

lattice, the critical value of the occupation probability of a V. SUMMARY AND OUTLOOK
site, s¢(V), will differ from the V= value,s;(). One can ) ) ] ] .
assume a reasonable finite size correction of the form In this paper, we have studied a simple stochastic lattice

model where masses diffuse as a whole and coalesce upon

a contact with rate 1, and every nonzero mass gives a single
se(V)=s¢— —, (24)  unit of mass to a neighbor with rate The mass density is
v conserved by the dynamics. This model undergoes a non-
equilibrium phase transition in the{w) plane across a criti-
cal line p,(w). We have shown analytically thai(w)
=yw+1-1 in all dimensions. We also provided both direct
and indirect numerical evidence that strongly suggests that
the mean field result for the single site mass distribution

wherea is a constant and is a new exponent. Using this
ansatz along with the expression {on?) obtained from Eq.
(20) in Eq. (7), we find V¢G~771~v~¢ implying another
scaling relation,

6=1—$H(3— 7). (250 function P(m) might be exact in all dimensions and that the
exponentr=>5/2 is superuniversal.
If 7=5/2 and¢=2/3, we get from Eq(25) =2/3. In Fig. 3, However, we would like to stress one important point.

we plot, in one dimensiors.(V) for various values o/ and  Even though the single site distributiéd®(m) may be given
indeed find tha##=2/3. This provides an indirect numerical exactly by the mean field result, that does not prove that
check on these scaling assumptions as well as suggestingiean field theory or product measure is the exact stationary
once again, that=>5/2 is a superuniversal exponent. state in all dimensions. In this sense, the CM is different
Another indirect check can be done by mapping the onefrom the recently studied model of force fluctuationg27],
dimensional CM to a fluctuating interface modéb]. We  where the product measure is exact in the stationary state.
outline the procedure in brief. The first step is to map the CMMore precisely, in theg model, the evolution equation for
onto a system of hard core particles moving on a ring. Fosingle site mass distributioR(m) involves the two-point
this, interpretm;, the mass at sitg to be the gap between distribution P(my,m,). Similarly, the equation for the two-
the (i—1)th andith particles. Then the chipping move cor- point involves the three-point functioR(m.,m,,ms), and
responds to a particle jumping forward one step provided theo on. However, if one assumes the product measure, i.e.,
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P(my,m,, ... m,)=P(my)P(m,)---P(m,) for all n, then lations may be more generic and less exceptional than might
it was shown[27] that this ansatz satisfies all the equations@PP€ar. . _

of the hierarchy. In the CM, in a similar way, one can write N this paper we have studied the undirected CM. As men-
down the full hierarchy of equations satisfied by thgoint tlo_ned |n'th¢ Introduction, t_he dl_rected CM also has a quali-
distribution functions. However, unlike in the model, the tatively similar phase transition in the steady state, although
product measure ansatz does not satisfy all the equations tye asso_mated critical exponents are entirely dlffer_ent fromin
this hierarchy[28]. Nevertheless, the expression f8¢m)  the undirected one. Also, the phase boundary in ghe
obtained from the first equation of this hierardiige equa- plane of th_e directed CM was found be quite different _from
tion that involves onlyP(m) and P(m;,m,)] seems to be the mean field phase bounde_[mb]. A proper understandlng_
extremely close to the numerical result. This suggests that iRf the directed model remains an outstanding challenging
the stationary state of the CM correlations between massd¥oblem.
appear only in the third- or higher order correlations but

seem to be absent at the two-point level. This remarkable

fact was also noticed recently in another aggregation model,
namely, the asymmetric random average process with se- We thank M. Barma, D. Dhar, and S. Krishnamurthy for
quential updategl9,20, suggesting that such unusual corre- useful discussions.

ACKNOWLEDGMENTS

[1] For a recent review, see H. Hinrichsen, e-print Phys.99, 1 (2000.

cond-mat/0001070. [16] P.L. Krapivsky and S. Redner, Phys. Revs& 3553(1996.
[2] R.M. Ziff, E. Gulari, and Y. Barshad, Phys. Rev. Le§6,  [17] I. Ispolatov and P.L. Krapivsky, e-print cond-mat/0002047.
2553(1986. [18] H. Takayasu and Y-H. Taguchi, Phys. Rev. L&t 782
[3] F. Schal, Z. Phys.253 147 (1972. (1993.
[4] 3. Kerfg;z and D.E. Wolf, Phys. Rev. Let2, 2571(1989. [19] J. Krug and J. Garcia, J. Stat. Phg§, 31 (2000.
[5] |\/|.H,. Kim and H. Park, Phys. Rev. Leff3, 2579(1994). [20] R. Rajesh and S.N. Majumdar, J. Stat. PI88;.943 (2000.
[6] J. Lopez and H. Jen§en, Phys. Rev. Lé&tt, 1734(1998. [21] R.J. Glauber, J. Math. Phys, 294 (1963.

[7] N. Menyhad and G. Qor, J. Phys. A29, 7739(1996.

[8] J. Cardy and U.C. “uber, J. Stat. Phy<0, 1 (1998.

[9] B. Derrida and M.R. Evans, iNonequilibrium Statistical Me-
chanics in One Dimensigredited by V. Privmar{Cambridge
University Press, Cambridge, 1997

[10] H. Hinrichsen, R. Livi, D. Mukamel, and A. Politi, Phys. Rev. )
Lett. 79, 2710(1997; Phys. Rev. B51, R1032(2000. [25] S.N. Majumdar and D. Huse, Phys. Rev5E 270 (1995.

[11] T. Hwa and M. Munoz, Europhys. Le#1, 147 (1998 [26] J. Krug and H. Spohn, iSolids Far from Equilibriumedited
[12] S.N. Majumdar, S. Krishnamurthy, and M. Barma, Phys. Rev. by C. Godreche(Cambridge University Press, Cambridge,

[22] R. Rajesh and S.N. Majumdar, Phys. Rev6E 3186(2000.

[23] M. Lewandowska, H. Mathur, and Y.-K. Yu, e-print
cond-mat/0007109.

[24] H. Takayasu, Phys. Rev. Le@3, 2563(1989; H. Takayasu, .
Nishikawa, and H. Tasaki, Phys. Rev.3%, 3110(1988.

E 61, 6337(2000. 1991); T.J. Halpin-Healy and Y.C. Zhang, Phys. R&p4, 215
[13] L. Giada and M. Marsili, e-print cond-mat/0005442. (1995. . . .
[14] S.N. Majumdar, S. Krishnamurthy, and M. Barma, Phys. Rev.[27] S.N. Coppersmith, C.-H. Liu, S.N. Majumdar, O. Narayan, and
Lett. 81, 3691(1998. T.A. Witten, Phys. Rev. B3, 4673(1996.

[15] S.N. Majumdar, S. Krishnamurthy, and M. Barma, J. Stat.[28] R. Rajesh and S. N. Majumdaunpublishegl

036114-7



