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Exact phase diagram of a model with aggregation and chipping
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We reexamine a simple lattice model of aggregation in which masses diffuse and coalesce upon contact with
rate 1 and every nonzero mass chips off a single unit of mass and adds it to a randomly chosen neighbor with
ratew. The dynamics conserves the average mass densityr and in the stationary state the system undergoes a
nonequilibrium phase transition in the (r-w) plane across a critical linerc(w). In this paper, we show
analytically that in arbitrary spatial dimensionsrc(w)5Aw1121 exactly and hence, remarkably, is indepen-
dent of dimension. We also provide direct and indirect numerical evidence that strongly suggests that the mean
field asymptotic results for the single site mass distribution function and the associated critical exponents are
superuniversal, i.e., independent of dimension.
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I. INTRODUCTION

Nonequilibrium phase transitions@1# occur in various sys-
tems including heterogeneous catalysis@2#, chemical reac-
tion models@3#, polynuclear growth models@4#, monomer-
dimer models @5#, models of fungal growth @6#,
nonequilibrium kinetic Ising models@7#, and branching an-
nihilating random walks@8#. A common feature in all the
above is that the transition is from a state that has no acti
to one that has continued activity. Such transitions are w
characterized by the critical exponents of directed perc
tion ~DP!, parity conserving, or DP2 universality classe
There are other nonequilibrium models that undergo ph
transitions which do not belong to the above universa
classes. These include boundary driven phase transition@9#
and models whose steady states undergo a depinning o
binding transition@10–13#. Recently, a simple lattice mode
where masses diffuse, aggregate on contact, and also ch
a single unit of mass was studied@14,15#. This chipping
model ~CM! exhibits a nonequilibrium phase transitio
@14,15# in its steady state from a phase in which aninfinite
aggregate is present to one that has none. This nonequ
rium phase transition is in a completely different universa
class from the other models studied in the literature and m
tioned above. The mathematical mechanism giving rise
the formation of the infinite aggregate at the onset of
phase transition was found to be very similar to that of
equilibrium Bose-Einstein condensation in an ideal Bose g
The difference is that in the CM the infinite aggregate
condensate forms in real space as opposed to the Bose
where the condensation takes place in momentum spac
addition, the phase transition in the CM occurs even in o
dimension as opposed to the Bose gas where the conde
tion occurs in two and higher dimensions. A slightly diffe
ent off-lattice version of the CM was studied earlier with
the rate equation approach in the context of aggregatio
dry environments@16#. A directed version of the CM where
masses move asymmetrically only along one direction w
studied in Ref.@15# and its critical properties were found t
belong to a different universality class from that of the u
directed CM. This directed CM also appeared recently in
1063-651X/2001/63~3!/036114~7!/$15.00 63 0361
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context of a traffic model with passing@17#. Related models
of fragmentation and diffusion have been studied in@18–20#.

The undirected CM is defined on ad-dimensional hyper-
cubic lattice with periodic boundary conditions. Startin
from a random distribution of non-negative integer masse
each lattice site, the system evolves in continuous time
the following microscopic processes. In an infinitesimal tim
interval Dt, ~i! with probability Dt, the mass at each sit
hops to one of its neighboring sites, chosen at random,~ii !
with probability wDt, a unit mass is chipped off from a
already existing mass at each site and added to one o
neighboring sites, again chosen at random, and~iii ! with
probability @12(11w)Dt#, each mass stays at its origin
site. Following the steps~i!–~iii !, the masses at any give
site are added up. Since this system is closed to the envi
ment ~periodic boundary condition!, the total mass is con
served by the dynamics. Thus, there are two parameter
the problem, the average mass per siter, and the ratio of the
chipping rate to the rate of hopping as a whole,w. In the long
time limit, the system evolves into a time independent ste
state. The steady state single site mass distribution func
P(m), i.e., the probability that a site has massm when t
→`, was shown to undergo a phase transition in ther-w
plane@14,15#. There is a critical linerc(w) in ther-w plane
that separates two types of asymptotic behavior ofP(m). For
fixed w, as r is varied across the critical valuerc(w), the
largem behavior ofP(m) was found to be

P~m!;H e2m/m* , r,rc~w!

m2t, r5rc~w!

m2t1 infinite aggregate, r.rc~w!.

~1!

Thus, the tail of the mass distribution changes from an
ponential decay to an algebraic decay asr approachesrc
from below. As one increasesr beyondrc , this asymptotic
algebraic part of the critical distribution remains unchang
but in addition an infinite aggregate forms. This means t
all the additional mass (r2rc)V ~whereV is the volume of
the system! condenses onto a single site and does not dis
the background critical distribution. This is analogous,
©2001 The American Physical Society14-1
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spirit, to the condensation of a macroscopic number
bosons onto the singlek50 mode in an ideal Bose gas as t
temperature goes below a certain critical value. This infin
tower, i.e., the single site carrying macroscopically lar
~proportional to volume! mass, is mobile. Mathematicall
this means that forr.rc(w) P(m);m2t1(1/V)d(m
2aV) wherea5r2rc . This lastd-function peak contrib-
utes only to order 1/V in the integral*P(m)dm, indicating
that the aggregate is contained in thermodynamically
sites~indeed, a single site! but contributes a finite amounta
in the integral*mP(m)dm even in the thermodynamic limi
V→`.

These results were found both analytically within a me
field approximation, which involved ignoring all correlation
between masses, and numerically in one dimension. Wi
the mean field approximation, the locus of the critical li
was found@14# to be rc(w)5Aw1121 and the exponen
t55/2 @14,16#. In one dimension, the numerically obtaine
critical line @14# was found to be close to the mean fie
phase curve. Even the exponentt, determined from a simple
linear fit on the log-log plot of data from relatively smalle
size lattices, was found to bet'2.33, rather close to the
mean field exponent 2.5. This raises the question whethe
not the mean field results for asymptotic behaviors ofP(m)
are exact even in one dimension. On the other hand, one
show explicitly~see Sec. II! that there exist nonzero correla
tions between masses in any finite dimension, even in
thermodynamic limit. Thus, one is confronted with a puzz

The purpose of this paper is to shed light on this puzzl
issue. We first prove analytically the remarkable result t
the mean field phase boundaryrc(w)5Aw1121 is indeed
exactand independent of the spatial dimensiond. This, of
course, still does not prove, but hints, that the exponent
may also be independent ofd. However, we provide rathe
unambiguous numerical evidence, in conjunction with s
eral direct and indirect checks, which suggests that even
exponentt55/2 is superuniversal and independent ofd.
Thus, our results seem to suggest strongly that, even tho
there are nonzero correlations between masses in finite
mensions, these correlations do not affect the asymptotic
havior of the single site steady state mass distributionP(m).
However, the possibility remains that other higher order c
relation functions, such as the joint distribution of tw
massesP(m1 ,m2), will depend on the spatial dimensiond.

The paper is organized as follows. In Sec. II, we sh
analytically that in arbitrary dimensiond the locus of the
phase boundary is independent ofd and is given by the mean
field expressionrc(w)5Aw1121. In Sec. III, we rederive
analytically the mean field expression for the mass distri
tion P(m) by a method different from that used in@14# and
compare these analytical expressions with the numerica
sults obtained in one and two dimensions. In Sec. IV, we
a finite size scaling analysis that provides additional e
dence that the exponentt is superuniversal. Finally, we con
clude with a summary and discussion in Sec. V.

II. EXACT PHASE DIAGRAM
IN ARBITRARY DIMENSIONS

As mentioned in the Introduction, the steady state of
CM undergoes a phase transition in its parameter space (r-w
03611
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plane! across a critical linerc(w) in all dimensions. In this
section, we computerc(w) exactly in arbitrary dimensions
by analyzing the two-point equal time mass-mass correla
function C(x,t)5^m(x,t)m(0,t)&. Let h(x,x8,t) denote the
mass transferred from a sitex to a neighboring sitex8 in the
time interval betweent and t1Dt. Clearly, h(x,x8,t) is a
random variable that takes the values

h~x,x8,t !

5H m~x! with probability ~1/2d!Dt

12dm(x),0 with probability ~1/2d!wDt

0 with probability 12@~11w!/2d#Dt,

~2!

where 2d is the number of neighbors of any given site. T
Kroneckerd function in the second line of Eq.~2! indicates
that a chipping of a unit mass can take place provided
massm(x) is a positive integer bigger than 0. Then, th
evolution of mass at sitex can be written as

m~x,t1Dt !5m~x,t !2(
x8

h~x,x8,t !1(
x8

h~x8,x,t !,

~3!

where the sum is over the neighborsx8 of the sitex. The
second term on the right hand side of Eq.~3! describes the
outflow of mass fromx while the third term accounts for th
inflow of mass intox from neighboring sites. It is quite
straightforward to write down the two-point correlator forh
to orderDt. Suppressing the explicitt dependence inh, we
find

^h~x1 ,x18!h~x2 ,x28!&5
1

2d
@m2~x1!1w~12dm(x1),0!#

3dx1 ,x2
dx

18 ,x
28
Dt. ~4!

Using Eqs.~3! and ~4!, the evolution equations for the two
point equal time correlation function C(x,t)
5^m(x,t)m(0,t)& can be written down. Multiplying Eq.~3!
by m(0,t1dt) and taking the average on both sides, a
putting all time derivatives to zero in the steady state, we g

2C~x!1
1

2d (
x8

C~x8!

5wS 2D~x!1
1

2d (
x8

D~x8!D
2@C~0!1ws#S dx,02

1

2d (
x0

dx,x0D , ~5!

wherex0 denotes the neighbors of the site0. Also, D(x,t)
5^m(x,t)dm(0,t),0&, ands512^dm(0),0& is the probability of
a site having nonzero mass. Thus, in the CM, the two-po
correlation functions do not form a closed set of equatio
making it difficult to solve forC(x,t) exactly. This is unlike
many other models where two-point correlations do form
4-2
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closed set of equations and hence are solvable. A few
amples include the one-dimensional~1D! Glauber model
@21#, asymmetric random average processes@19,20#, the
Takayasu model of aggregation@22#, and theq model of
force fluctuations in bead packs@22,23#.

Remarkably, however, Eq.~5! allows for the solution

C~x!5w@D~x!2s#, xÞ0. ~6!

This solution is also the unique solution. To see this, obse
that the homogeneous part of Eq.~5! is the Laplace equation
¹2@C(x)2wD(x)#50, with the boundary condition tha
C(x)2wD(x) is a constant asuxu→`. Since the solution
Eq. ~6! satisfies the inhomogeneous part too, as well as
boundary conditions, it is the unique solution.

Note that the above solution Eq.~6! is also valid on a
finite lattice. Summing Eq.~6! over all xÞ0 and using the
fact that the conserved total mass is given by(xm(x)5rV
~whereV5Ld is the volume of the system!, we get the exact
equation

r22
^m2&

V
5wr~12s!2ws. ~7!

This equation is reminiscent of Bose-Einstein condensa
in an ideal Bose gas. In the low density phase, we expect
the system reaches a stationary state in which^m2& is a finite
number of orderO(1). Therefore, in the thermodynami
limit V→`, the second term on the left hand side of Eq.~7!
drops out and we get

r25wr~12s!2ws. ~8!

Note that Eq.~8! could have been obtained from Eq.~6! if
we had assumed that the two-point correlation functions
couple, i.e., C(x)5^m(0)m(x)&5^m(0)&^m(x)&5r2 and
D(x)5^m(x)dm(0),0&5r(12s). However, there is no reaso
a priori for the two-point correlations to decouple. Our de
vation of Eq.~8! does not rely on this decoupling.

From Eq.~8! we get

s5
wr2r2

w~r11!
. ~9!

According to Eq.~9!, as one increases the densityr, keeping
w fixed, the occupation probabilitys first increases withr,
attains a maximum atr5Aw1121 @obtained by setting
ds/dr50 in Eq. ~9!#, and then starts decreasing with i
creasingr. However, it is clear thats, the probability that a
site has nonzero mass, must be a monotonically nondec
ing function ofr. Hence we conclude that Eq.~9! is valid as
long asr<rc5Aw1121. Forr.rc , the basic assumption
^m2&/V→0 asV→` breaks down and Eq.~9! ceases to be
valid.

Thus, the critical density is given by

rc~w!5A11w21, ~10!

and, remarkably, it is independent ofd and not surprisingly,
therefore, coincides with the mean field expression@14,15#.
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For r<rc , s is given by Eq.~9!. As r increases from 0 to
rc(w) ~for fixed w), s increases monotonically according
Eq. ~9! up to the valuesc given by

sc5
A11w21

A11w11
. ~11!

For r.rc(w), s does not increase any further and sticks
its valuesc . Puttings5sc in Eq. ~7! and using the expres
sion of sc from Eq. ~11!, we get forr.rc(w)

lim
V→`

K m2

V L 5~r2rc!
2. ~12!

Thus, for r.rc , ^m2& becomes macroscopic, i.e., propo
tional to volume. Sinces, the fraction of occupied sites, doe
not increase any longer forr.rc , this indicates that all the
extra mass (r2rc)V condenses onto a thermodynamica
negligible number of sites~indeed, a single site only! with
density;1/V, leading to the macroscopic behavior of^m2&
;(1/V)@(r2rc)V#2;(r2rc)

2V. This is similar in spirit,
though not in detail, to the Bose-Einstein condensati
where below a certain temperature the number of particle
the k50 mode also becomes macroscopic.

Let us conclude this section by stressing an import
point. We note that the mean field solution~assuming decou-
pling! for the stationary two-point correlation function
C(x)5r2 for xÞ0 andD(x)5r(12s) for xÞ0 with s sat-
isfying Eq. ~7!, is indeed an exact solution of Eqs.~5! and
~6!. However, this need not be the only stationary solutio
In addition even if the mean field result for the two-poi
stationary correlation function is the correct one, it still do
not prove that the mean field theory is exact. For exam
one can show that indeed three- and higher point correla
functions do not decouple. In any case, the main result of
section, namely, the derivation of the exact phase bound
does not rely on whether the correlation functions decou
or not.

III. COMPARISON WITH MEAN FIELD THEORY

In the previous section, we proved that the mean fi
phase diagram is exact in any dimension. This, of cou
does not prove, but suggests that, perhaps, even the m
field expression for the distributionP(m) may also be as-
ymptotically exact in all dimensions. In this section, we t
to provide evidence in favor of this hypothesis. For this w
first rederive the mean field expression forP(m) and com-
pare it with the numerical results obtained in one and t
dimensions.

In Ref. @14#, the steady state single site mass distribut
function P(m) was computed analytically by assuming th
the joint distribution P(m1 ,m2), the probability that two
consecutive sites have massesm1 andm2, respectively, fac-
torizes, i.e.,P(m1 ,m2)5P(m1)P(m2). With this assump-
tion, P(m) was shown to satisfy a closed set of equatio
which were then solved via the generating function meth
yielding the results given in Eq.~1! with t55/2 andrc(w)
4-3
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5Aw1121. In this section, we first rederive the mean fie
results by a different method that requires fewer restricti
than the product measure used in Ref.@14#.

Here we use a technique used before for solving the m
distribution function in other models of aggregation@24# as
well as in thew50 limit of the CM @25#. We consider the
CM on a 1D lattice. LetP(m1 ,m2 , . . . ,mn) denote the joint
probability thatn consecutive sites on the lattice have mas
m1 , m2 , . . . ,mn , respectively, in the stationary state. W
define two generating functions,

Zn5 (
m150

`

••• (
mn50

`

xm11•••1mnP~m1 , . . . ,mn!, ~13!

Yn5 (
m150

`

••• (
mn50

`

xm11•••1mnP~m1 , . . . ,mn,0!. ~14!

Here Zn5^xm11•••1mn& is an unconditional average butYn
5^xm11•••1mn&0 is a conditional average where th
(n11)th site is conditioned to have 0 mass. Using the
namics ofmi @as given by Eq.~3!# and following steps simi-
lar to those used in Refs.@24,25#, one can write down the
evolution equations forZn . In the steady state, when all tim
derivatives go to zero, we get, after some algebra,

Zn1122Zn1Zn211wS ~12x!2

x
Zn

2
12x

x
Yn211~12x!YnD50, ~15!
u
m

no
n

03611
s

ss

s

-

with the boundary conditionsZ051 andY05P(0)512s,
the probability of having no mass at any given site.

If we now make the assumption thatP(m11•••1mn
5m,0)5P(m11•••1mn5m)P(0), i.e., Yn5P(0)Zn ,
then we get equations that contain only theZn’s. As men-
tioned before, this assumption is less strict than the prod
measure approximation as it requires the factorization
only a special conditional probability where a site at t
beginning of a string is empty. In order to determineP(m),
we need to computeZ1(x) which, by definition in Eq.~14!,
is the generating function for theP(m)’s,

Z1~x!5 (
m50

`

xmP~m!. ~16!

SinceZ1 depends on otherZn’s, we need to solve the full Eq
~15! for all n. Equation~15! can be solved by the standar
generating function method. LetG(x,y)5(n51

` Zn(x)yn.
Multiplying Eq. ~15! by yn and summing overn, we get,
after straightforward algebra,

G~x,y!5
y@wP~0!y~12x!2xy1xZ1~x!#

x~12y!21wy~12x!21wP~0!y~12x!~x2y!
.

~17!

For a fixed x, when considered as a function ofy only,
G(x,y) has two poles,
a
s

y1,25
22x1w~12x!~12sx!6~12x!AwAw~12sx!224sx

2„~12s!w~12x!2x…
. ~18!

For a fixedw and s, uy2u,1 for small values ofx. This implies thatZn;uy2u2n for large n. However, we cannot have
diverging probability for largen. Hence this pole must be canceled by the numerator ofG. This pole canceling mechanism wa
also useful in deriving exact results in other recently studied aggregation models@20,22#. Demanding thatG(x,y2)50, we get
the following expression forZ1(x):

Z1~x!5
2x2w~12x!~12sx!1~12x!AwAw~12sx!224sx

2x
. ~19!
n

e
-

the

for

is-
The coefficient ofxm on the right hand side of Eq.~19! will
then give the desired distributionP(m).

The expression for the generating functionZ1(x)
5(m50

` xmP(m) in Eq. ~19! is identical to the one derived in
@14# using the approximation of the product measure. Th
the two methods, although different in detail, yield the sa
P(m) for any mand not just for largem. This result for the
mean fieldP(m) seems to be extremely robust and does
depend on the details of how the mean field assumptio
incorporated.

The asymptotic properties ofP(m) for large m can be
derived by analyzing the behavior ofZ1(x) nearx51 @14#,
s,
e

t
is

and one recovers the results in Eq.~1! with t55/2 and
rc(w)5Aw1121. However, by expanding the expressio
for Z1(x) in Eq. ~19! in powers ofx using MATHEMATICA ,
we have determinedP(m) for all m. In the aggregate phas
(r.rc), we sets5sc in Eq. ~19! and calculate the distribu
tion P(m) by expanding in powers ofx. In Fig. 1, we com-
pare this analytical mean field answer for allm with the
numerical results obtained in one and two dimensions in
aggregate phase (r.rc). Note that Fig. 1 shows only the
power law part of the spectrum. The numerical data are
V5900 in one dimension and for a 30330 lattice in two
dimensions. The two curves for 1D and 2D are almost ind
4-4
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tinguishable from each other. While the numerical d
match the mean field result excellently for smallm, there is a
small deviation for larger masses. This deviation at largem is
due to finite size effects. To confirm this, we also did sim
lations for larger lattice sizes up toV52000 in one dimen-
sion. For a fixed mass, we confirmed that the deviation fr
the mean field decreases with increasingV ~see the inset in
Fig. 1!. We also compared the mass distribution in the ex
nential phase (r,rc) with the mean field prediction. Again
excellent agreement is seen~see Fig. 2!. These results thus
provide strong evidence that the mean field expression
P(m) is exact in all dimensions and therefore the expon
t55/2 is also superuniversal, i.e., independent ofd.

IV. FINITE SIZE SCALING AND INDIRECT NUMERICAL
CHECKS

In this section, we provide further indirect numeric
checks which again strongly suggest that the mean field
sult for P(m) is indeed exact. We start by making a reaso
able finite size scaling ansatz forP(m,V) ~whereV is the
volume of the system! in the aggregate phaser.rc for large
m,

P~m,V!'
1

mt
f S m

VfD 1
1

V
d„m2~r2rc!V…, ~20!

where the exponentf is a crossover exponent and thed
function peaked at (r2rc)V indicates the aggregate contai
ing a macroscopic amount of mass. The power law par
the mass distribution is cut off at;Vf for finite V. Since the

FIG. 1. The power law parts of the steady state mass distr
tionsP(m) in one and two dimensions are compared with the m
field result in the aggregate phaser.rc . The data are forw53
andr510. The critical value isrc51 for w53. In the inset panel,
we show the convergence of the probability distribution to its me
field value as the system size is increased in one dimension.
03611
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largest mass inside the power law part is much smaller t
that in the aggregate, we get the inequalityf,1.

Also, the mass density*mP(m)dm5r is finite. Substi-
tuting Eq. ~20! in this integral, it is evident that for largeV
the integral will converge providedt.2. Also, from Eq.
~20!, one finds that the second moment^m2&/V'(r2rc)

2

1O(Vf(32t)21). The first term is from the aggregate an
the second term is from the power law part. This is cons
tent with the exact result Eq.~12! provided thatf(32t)
,1. This provides an upper bound fort, i.e.,t,3. Thus, we
have the exact bounds fort, 2,t,3. The mean field results
and numerical simulations in 1D and 2D are consistent w
these bounds.

Next we derive a scaling relation betweent andf. This
is obtained by demanding thatP(m,V) is normalized,
*P(m,V)dm51. Substituting Eq.~20! in this integral, we
get

E
ml

` 1

mt f S m

VfDdm5c2
1

V
, ~21!

wherec is a constant ofO(1), andml;O(1) is the mass
beyond which the scaling starts holding. Differentiating E
~21! twice with respect toV and making a change of variable
we arrive at the relation

E
mlV

2f

`

f 9~y!y22t dy52~12f!Vft2121, ~22!

wheref 9(y)5d2f /d2y. The reason for double differentiatio
is as follows. Since 2,t,3, one can replace the lower lim
of the integral in Eq.~22! by 0 in theV→` limit and there
is no divergence from the lower cutoff. Once the lower c

u-
n

n

FIG. 2. The steady state mass distributions in one and two
mensions in the exponential phase (r,rc) are compared with the
mean field result. The data are forw58 and r51. The critical
value isrc52 for w58.
4-5
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off is replaced by 0, the integral on the left hand side of E
~22! is of O(1). Comparing this with the right hand side o
Eq. ~22!, we immediately arrive at the scaling relation

f~t21!51. ~23!

If t55/2, Eq.~23! would indicatef52/3.
We found that the cleanest way to measure the expo

f is by the following indirect finite size method. On a fini
lattice, the critical value of the occupation probability of
site,sc(V), will differ from the V5` value,sc(`). One can
assume a reasonable finite size correction of the form

sc~V!5sc
`2

a

Vu
, ~24!

wherea is a constant andu is a new exponent. Using thi
ansatz along with the expression for^m2& obtained from Eq.
~20! in Eq. ~7!, we find Vf(32t)21;V2u, implying another
scaling relation,

u512f~32t!. ~25!

If t55/2 andf52/3, we get from Eq.~25! u52/3. In Fig. 3,
we plot, in one dimension,sc(V) for various values ofV and
indeed find thatu52/3. This provides an indirect numerica
check on these scaling assumptions as well as sugges
once again, thatt55/2 is a superuniversal exponent.

Another indirect check can be done by mapping the o
dimensional CM to a fluctuating interface model@15#. We
outline the procedure in brief. The first step is to map the C
onto a system of hard core particles moving on a ring.
this, interpretmi , the mass at sitei, to be the gap betwee
the (i 21)th andi th particles. Then the chipping move co
responds to a particle jumping forward one step provided

FIG. 3. The probability of a site being occupied,sc(V), con-
verges to its asymptotic value,sc(`), as a power law, i.e.,sc(`)
2sc(V);1/V0.66. The data are for lattices in one dimension.
03611
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nt

ng,
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r

e

target site is empty, while the aggregation move correspo
to a particle making a long range jump to the site adjacen
the particle nearest to it. There is a standard procedur
map a lattice gas configuration to an interface configurat
@26#. Let nj51 (21) if a particle is present~absent! at sitei.
Thenhi5( j 51

i nj . While the chipping move corresponds
a local move of the interface, the aggregation move co
sponds to a nonlocal move of the interface. The width of t
interface was monitored numerically@15# as a function of
time t. On the critical linerc(w) of the CM, the width was
found to have the scaling form@15#

w~V,t !'Vx f S t

VzD , ~26!

with x'0.67 andz'2.0.
We show here that the roughness exponentx can be re-

lated to the exponentst andf of the CM. We first map the
CM in 1D to an interface model with the height fieldhi

5( j 51
i mj . Then ^hi&5 ir and ^hi

2&' i ^m2&1 i ( i 21)r2. If
we approximatêmimj& by r2 @assuming that the mean fiel
P(m) is exact#, the width is then simplyw251/V( i 51

V (hi

2^hi&)
2;V11f(32t)5V2x. This implies that provided

^mimj&'r2 one gets the scaling relation

x5
1

2
@11f~32t!#. ~27!

If t55/2 andf52/3, we get from Eq.~27! x52/3, in ex-
cellent agreement with the numerical valuex'0.67 @15#.
This is further evidence fort55/2 andf52/3.

V. SUMMARY AND OUTLOOK

In this paper, we have studied a simple stochastic lat
model where masses diffuse as a whole and coalesce
contact with rate 1, and every nonzero mass gives a sin
unit of mass to a neighbor with ratew. The mass densityr is
conserved by the dynamics. This model undergoes a n
equilibrium phase transition in the (r-w) plane across a criti-
cal line rc(w). We have shown analytically thatrc(w)
5Aw1121 in all dimensions. We also provided both dire
and indirect numerical evidence that strongly suggests
the mean field result for the single site mass distribut
function P(m) might be exact in all dimensions and that th
exponentt55/2 is superuniversal.

However, we would like to stress one important poi
Even though the single site distributionP(m) may be given
exactly by the mean field result, that does not prove t
mean field theory or product measure is the exact station
state in all dimensions. In this sense, the CM is differe
from the recently studiedq model of force fluctuations@27#,
where the product measure is exact in the stationary s
More precisely, in theq model, the evolution equation fo
single site mass distributionP(m) involves the two-point
distribution P(m1 ,m2). Similarly, the equation for the two
point involves the three-point functionP(m1 ,m2 ,m3), and
so on. However, if one assumes the product measure,
4-6
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P(m1 ,m2 , . . . ,mn)5P(m1)P(m2)•••P(mn) for all n, then
it was shown@27# that this ansatz satisfies all the equatio
of the hierarchy. In the CM, in a similar way, one can wr
down the full hierarchy of equations satisfied by then-point
distribution functions. However, unlike in theq model, the
product measure ansatz does not satisfy all the equation
this hierarchy@28#. Nevertheless, the expression forP(m)
obtained from the first equation of this hierarchy@the equa-
tion that involves onlyP(m) and P(m1 ,m2)] seems to be
extremely close to the numerical result. This suggests tha
the stationary state of the CM correlations between ma
appear only in the third- or higher order correlations b
seem to be absent at the two-point level. This remarka
fact was also noticed recently in another aggregation mo
namely, the asymmetric random average process with
quential updates@19,20#, suggesting that such unusual corr
int

v.

ev

ev

at
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lations may be more generic and less exceptional than m
appear.

In this paper we have studied the undirected CM. As m
tioned in the Introduction, the directed CM also has a qu
tatively similar phase transition in the steady state, althou
the associated critical exponents are entirely different from
the undirected one. Also, the phase boundary in ther-w
plane of the directed CM was found be quite different fro
the mean field phase boundary@15#. A proper understanding
of the directed model remains an outstanding challeng
problem.
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@7# N. Menyhárd and G. Ódor, J. Phys. A29, 7739~1996!.
@8# J. Cardy and U.C. Ta¨uber, J. Stat. Phys.90, 1 ~1998!.
@9# B. Derrida and M.R. Evans, inNonequilibrium Statistical Me-

chanics in One Dimension, edited by V. Privman~Cambridge
University Press, Cambridge, 1997!.

@10# H. Hinrichsen, R. Livi, D. Mukamel, and A. Politi, Phys. Re
Lett. 79, 2710~1997!; Phys. Rev. E61, R1032~2000!.

@11# T. Hwa and M. Munoz, Europhys. Lett.41, 147 ~1998!.
@12# S.N. Majumdar, S. Krishnamurthy, and M. Barma, Phys. R

E 61, 6337~2000!.
@13# L. Giada and M. Marsili, e-print cond-mat/0005442.
@14# S.N. Majumdar, S. Krishnamurthy, and M. Barma, Phys. R

Lett. 81, 3691~1998!.
@15# S.N. Majumdar, S. Krishnamurthy, and M. Barma, J. St
.

.

.

Phys.99, 1 ~2000!.
@16# P.L. Krapivsky and S. Redner, Phys. Rev. E54, 3553~1996!.
@17# I. Ispolatov and P.L. Krapivsky, e-print cond-mat/0002047.
@18# H. Takayasu and Y-H. Taguchi, Phys. Rev. Lett.70, 782

~1993!.
@19# J. Krug and J. Garcia, J. Stat. Phys.99, 31 ~2000!.
@20# R. Rajesh and S.N. Majumdar, J. Stat. Phys.99, 943 ~2000!.
@21# R.J. Glauber, J. Math. Phys.4, 294 ~1963!.
@22# R. Rajesh and S.N. Majumdar, Phys. Rev. E62, 3186~2000!.
@23# M. Lewandowska, H. Mathur, and Y.-K. Yu, e-prin

cond-mat/0007109.
@24# H. Takayasu, Phys. Rev. Lett.63, 2563~1989!; H. Takayasu, I.

Nishikawa, and H. Tasaki, Phys. Rev. A37, 3110~1988!.
@25# S.N. Majumdar and D. Huse, Phys. Rev. E52, 270 ~1995!.
@26# J. Krug and H. Spohn, inSolids Far from Equilibrium, edited

by C. Godreche~Cambridge University Press, Cambridg
1991!; T.J. Halpin-Healy and Y.C. Zhang, Phys. Rep.254, 215
~1995!.

@27# S.N. Coppersmith, C.-H. Liu, S.N. Majumdar, O. Narayan, a
T.A. Witten, Phys. Rev. E53, 4673~1996!.

@28# R. Rajesh and S. N. Majumdar~unpublished!.
4-7


