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We study analytically the order statistics of a time series generated by the positions of a symmetric random

walk of n steps with step lengths of finite variance �2. We show that the statistics of the gap dk;n ¼
Mk;n �Mkþ1;n between the kth and the ðkþ 1Þth maximum of the time series becomes stationary, i.e.,

independent of n as n ! 1 and exhibits a rich, universal behavior. The mean stationary gap exhibits a

universal algebraic decay for large k, hdk;1i=�� 1=
ffiffiffiffiffiffiffiffiffi
2�k

p
, independent of the details of the jump

distribution. Moreover, the probability density (pdf) of the stationary gap exhibits scaling, Prðdk;1 ¼ �Þ ’
ð ffiffiffi

k
p

=�ÞPð� ffiffiffi
k

p
=�Þ, in the regime �� hdk;1i. The scaling function PðxÞ is universal and has an unexpected

power law tail, PðxÞ � x�4 for large x. For � � hdk;1i the scaling breaks down and the pdf gets cut off in a
nonuniversal way. Consequently, the moments of the gap exhibit an unusual multiscaling behavior.
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During the last 50 years, extreme value statistics (EVS),
the statistics of the maximum or the minimum of a set
of random variables, have found many applications, rang-
ing from engineering [1] to environmental sciences [2] or
finance [3,4], where rare and extreme events may have
drastic consequences. It was demonstrated [5] that EVS
also plays a major role in the physics of complex and
disordered systems. Therefore finding the distribution of
the maximum xmax (or the minimum xmin) of a set of
nþ 1 random variables fx0; x1; x2; . . . ; xng has been the
subject of intense activity not just for independent and
identically distributed (iid) random variables [1], but also
recently for strongly correlated random variables [6–14]
that are often more relevant in physical contexts.

While the statistics of the extremum xmax (or xmin)
is important, they concern the fluctuations of a single value
among a typically large sample and a natural question is
then the following: are these extremal values isolated,
i.e., far away from the others, or are there many other
events close to them? Such questions have led to the study
of the density of states of near-extreme events [15,16].
This is, for instance, a crucial question in disordered sys-
tems, where the low temperature properties are governed
by excited states close to the ground state. A natural way
to characterize this phenomenon of crowding of near-
extreme events is via the order statistics, i.e., arranging
the random variables xm’s in decreasing order of magni-
tude M1;n > � � �>Mk;n > � � �>Mnþ1;n where Mk;n de-

notes the kth maximum of the set fx0; x1; . . . ; xng.
Evidently, xmax ¼ M1;n, while xmin ¼ Mnþ1;n. A set of

useful observables that are naturally sensitive to the
crowding of extremum are the gaps between the consecu-
tive ordered maxima: dk;n ¼ Mk;n �Mkþ1;n denoting the

kth gap.

While the study of order (or gap) statistics has received
considerable interest in statistics literature, e.g., in the
context of system reliability [17], the available results are
restricted only to iid variables. In contrast, there hardly
exist analytical results for the gap statistics for strongly
correlated random variables. The importance of order sta-
tistics for such correlated variables came up recently in
several physical contexts, notably in the study of the
branching Brownian motion [18] and also for 1=f� signals
[19] with an application to the statistical analysis of cos-
mological observations [20]. Any solvable model for the
order statistics for correlated variables would thus be wel-
come and this Letter takes a step in that direction.
In this Letter, we present exact analytical results for the

order statistics and the gap distribution of a time series
fx0; x1; . . . ; xng where xm represents the position of a ran-
dom walker at discrete time m. The walker starts at x0 ¼ 0
at time 0 and at each discrete step evolves via xm ¼ xm�1 þ
�m, where the noise �m’s are iid jump lengths, each drawn
from a symmetric and continuous distribution fð�Þ with
zero mean and a finite variance �2 ¼ R1

�1 �2fð�Þd�.
Even though the jump lengths are uncorrelated, the entries
xm’s are clearly correlated and represent perhaps the sim-
plest, yet most ubiquitous correlated time series (discrete-
time Brownian motion) with a large variety of applications
[21,22], including for instance in queuing theory [23]—
where xm represents the length of a single server queue at
timem—or in finance where xm represents the logarithm of
the price of a stock at time m [24]. Even for this relatively
simple correlated time series, we show that the gap distri-
bution exhibits a rather rich and universal behavior.
It is useful to summarize our main results. For large n,

one finds that hMk;ni=� ¼ ffiffiffiffiffiffiffiffiffiffiffiffi
2n=�

p þOð1Þ, independent

of k. Thus the property of the crowding of extremum
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(k dependence) is not captured by the statistics of the
maximaMk;n themselves, at least to leading order for large

n. The simplest observable that is sensitive to the crowding
phenomenon is the gap, dk;n ¼ Mk;n �Mkþ1;n (see Fig. 1).

Our main result is to show that the statistics of the scaled
gap dk;n=� becomes stationary, i.e., independent of n for

large n, but retains a rich, nontrivial k dependence which
becomes universal for large k, i.e., independent of the
details of the jump distribution fð�Þ. We compute the
stationary mean gap �dk ¼ hdk;1i exactly for all k, for

arbitrary fð�Þ and show that, when expressed in units of

�, it has a universal algebraic tail, �dk=� � 1=
ffiffiffiffiffiffiffiffiffi
2�k

p
for

large k. Next, we compute exactly the full pdf of the
stationary gap pkð�Þ ¼ Prðdk;1 ¼ �Þ for the exponential

jump distribution, fð�Þ ¼ b�1 expð�j�j=bÞ and show

that for large k, there is a scaling regimewhen �� hdk;1i ’
�=

ffiffiffiffiffiffiffiffiffi
2�k

p
where the pdf scales as, pkð�Þ ’ ð ffiffiffi

k
p

=�ÞP�
ð� ffiffiffi

k
p

=�Þ, with a nontrivial scaling function

PðxÞ ¼ 4

� ffiffiffiffi
2

�

s
ð1þ 2x2Þ � e2x

2
xð4x2 þ 3Þerfcð ffiffiffi

2
p

xÞ
�
; (1)

where erfcðzÞ ¼ ð2= ffiffiffiffi
�

p ÞR1
z e�t2dt is the complementary

error function. While we were unable to compute the gap
pdf for arbitrary fð�Þ, our numerical simulations provide
strong evidence that the scaling function PðxÞ in Eq. (1) is
actually universal, i.e., independent of fð�Þ. Somewhat
unexpectedly, we find that this universal scaling function

has an algebraic tail PðxÞ � x�4 for large x. For � �
hdk;1i ’ �=

ffiffiffiffiffiffiffiffiffi
2�k

p
, the pdf gets cut off in a nonuniversal

fashion. This is shown to have interesting consequences

for the moments of the stationary gap: hdpk;ni � k�p=2 for

p < 3, while hdpk;ni � k�3=2 for p > 3.

We start with the statistics of the kth maximum Mk;n of

the randomwalk xm ¼ xm�1 þ �m of n steps, starting from
the initial value x0 ¼ 0. The goal is to write down an

evolution equation for the cumulative distribution of the
kth maximum Fk;nðxÞ ¼ Pr½Mk;n � x�. The eventMk;n � x
means that we have at most (k� 1) points above the level x
between step 1 and n. To keep track of this event, it is
convenient first to define an auxiliary quantity qk;nðxÞ
denoting the probability that the random walk, starting at
x0 ¼ x, has k points below 0 from step 1 to step n. It is then
easy to see that Fk;nðxÞ can be expressed as the sum

Fk;nðxÞ ¼
(P

k�1
m¼0 qm;nðxÞ; x > 0;P
k�2
m¼0 qn�m;nð�xÞ; x < 0;

(2)

where we used that fð�Þ is symmetric and continuous.
The next step is to write a backward recurrence equation

for qk;nðxÞ by considering the stochastic jump x ! x0 at the
first step (see Fig. 2) and then subsequently using the
Markov property of the evolution. One gets, for n 	 1,

qk;nðxÞ ¼
Z 1

0
qk;n�1ðx0Þfðx0 � xÞdx0

þ
Z 0

�1
qn�k;n�1ð�x0Þfðx0 � xÞdx0; (3)

starting from q0;0ðxÞ ¼ 1. The first term corresponds to a

jump from x > 0 to x0 > 0 while the second term corre-
sponds to a jump from x > 0 to x0 < 0 (see Fig. 2).
The integral equation (3) is of the Wiener-Hopf type

which are generically hard to solve for arbitrary jump
distribution fðxÞ. However, for the special case fðxÞ ¼
1
2b expð�jxj=bÞ (with b ¼ �=

ffiffiffi
2

p
), using the useful prop-

erty, f00ðxÞ ¼ b2fðxÞ � b2�ðxÞ, we were able to reduce this
integral equation into a differential recurrence equation
which can subsequently be solved by generating function
method. Skipping details [25], we get

~qðz; s; xÞ ¼ X1
n¼0

Xn
k¼0

snzkqk;nðxÞ

¼ 1

1� s
þ

�
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1� sÞð1� zsÞp � 1

1� s

�

� exp

�
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1� sÞ

p x

�

�
; (4)

from which, using Eq. (2), the pth moment of the kth
maximum hMp

n;ki can be extracted. In particular, for

p ¼ 1 we get [25]

FIG. 1. A realization of a random walk of n ¼ 6 steps. We
denote by Mk;6 the kth maximum and focus, in particular, on the

gaps dk;n ¼ Mk;n �Mkþ1;n. Note that x0 is taken into account in

the statistics. FIG. 2. Illustration of the backward equation in Eq. (3).

PRL 108, 040601 (2012) P HY S I CA L R EV I EW LE T T E R S
week ending

27 JANUARY 2012

040601-2



hMk;ni
�

¼ Xn�kþ1

m¼k

�ðmþ 1
2Þffiffiffiffiffiffiffi

2�
p

m!
: (5)

It follows from (5) that for large n, hMk;ni=�� ffiffiffiffiffiffiffiffiffiffiffiffi
2n=�

p
,

independently of k, while the average gap hdk;ni is given by
hdk;ni
�

¼
�
�ðkþ 1

2Þffiffiffiffiffiffiffi
2�

p
k!

þ �ðn� kþ 3
2Þffiffiffiffiffiffiffi

2�
p ðn� kþ 1Þ!

�
: (6)

Note that hdk;ni ¼ hdn�kþ1;ni reflecting the up-down (max-

min) symmetry of the walk. Interestingly, as n ! 1, hdk;ni
approaches a finite value

lim
n!1

hdk;ni
�

¼ �ðkþ 1
2Þffiffiffiffiffiffiffi

2�
p

k!
: (7)

In addition, for large k,

lim
n!1

hdk;ni
�

¼ 1ffiffiffiffiffiffiffiffiffi
2�k

p þOðk�1Þ: (8)

Next we show that the result (8) is actually universal and
holds for arbitrary symmetric and continuous jump distri-
bution fðxÞ. To make progress for general fðxÞ, we came
across a very useful combinatorial identity known as
Pollaczek-Wendel identity [26,27]. Using this identity
and a few manipulations [25], we were able to derive the
following exact result

lim
n!1hdk;ni ¼ �dðkÞ ¼ �ffiffiffiffiffiffiffi

2�
p �ðkþ 1

2Þ
�ðkþ 1Þ

� 1

�k

Z 1

0

dq

q2

�
½f̂ðqÞ�k � 1

ð1þ �2

2 q2Þk
�
; (9)

where f̂ðqÞ ¼ R1
�1 eiq�fð�Þd� is the Fourier transform of

the jump distribution. The asymptotic analysis of (9) gives
the universal result [25]

�dðkÞ=�� ð2�kÞ�1=2; k � 1; (10)

independent of fð�Þ. This k�1=2 dependence of �dk (10) was
actually noticed in the numerical study of periodic random
walks in Ref. [19] and was also conjectured to be exact,
based on scaling arguments.

This result naturally raises the question whether only the
first moment of the gap is universal, or perhaps the univer-
sality extends even to the pdf of the gap, once it is scaled by
the nonuniversal scale factor �. This led us next to
investigate the full pdf of dk;n. It is convenient first to

consider the joint cumulative distribution Sk;nðx; yÞ ¼
Pr½Mk;n > y;Mkþ1;n < x�, with y > x. If we can compute

this, then the gap pdf Pk;nðdk;n ¼ �Þ can be obtained from

the relation

Pk;nð�Þ ¼ �
Z
R2

@2Sk;nðx; yÞ
@x@y

�ðy� xÞ�ðxþ �� yÞdxdy:
(11)

To compute Sk;nðx; yÞ, as before, it is convenient to first

define an auxiliary quantity Qk;nðx;�Þ denoting the

probability that a random walk of n steps, starting from
x0 ¼ x, has k points in the interval (�1,��] (with k 	 1)
and n� k points on the positive side, hence with no point
in the interval [� �, 0]. The joint distribution Sk;nðx; yÞ can
be expressed in terms of Q as

Sk;nðx; yÞ ¼

8>><
>>:
Qk;nðx; y� xÞ; x > 0;

0; x < 0 and y > 0;

Qn�kþ1;nð�y; y� xÞ; x < 0 and y < 0:

(12)

Following similar arguments leading to Eqs. (3), we derive
a backward integral equation, for n 	 1,

Qk;nðx;�Þ ¼
Z 1

0
Qk;n�1ðx0;�Þfðx� x0Þdx0

þ
Z 0

�1
Qn�k;n�1ð�x0;�Þfðx� x0 þ�Þdx0;

(13)

starting from Q0;0ðx;�Þ ¼ 1. As before, this integral equa-
tion can be reduced to a linear differential recurrence
equation for the special case, fðxÞ ¼ 1

2b expð�jxj=bÞ and
subsequently solved via the generating function method
[25]. We get

X1
n¼0

Xn
k¼0

zksnQk;nðx;�Þ ¼ 1

1� s
þ A

�
z; s;

ffiffiffi
2

p
�

�

�

� exp

�
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ð1� sÞp x

�

�
; (14])

where Aðz; s;�Þ has a complicated expression [25] omitted
here for clarity. From this result and using (11) and (12),
we find [25] that as n ! 1, Pk;nð�Þ ! pkð�Þ where

X1
k¼1

zkpkð�Þ ¼ 8z

b
e�2ð�=bÞ uðzÞ � vðzÞe�2ð�=bÞ

½uðzÞ þ vðzÞe�2ð�=bÞ�3 ; (15)

with uðzÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffi
1� z

p þ 1 and vðzÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffi
1� z

p � 1.
Extracting pk for all k from (15) is hard. However, one
can easily extract the asymptotic behavior for large k, by
analyzing the z ! 1 limit of (15). This yields, for k � 1

and � fixed, pkð�Þ � k�3=2Fð�Þ where Fð�Þ decays expo-
nentially for large � and represents the cutoff function.
However, before the distribution gets cut off for large �,

there is a scaling regime �� �dðkÞ � �=
ffiffiffiffiffiffiffiffiffi
2�k

p
, with k

large, where we anticipate a scaling form for the gap pdf

pkð�Þ ’ ð ffiffiffi
k

p
=�ÞPð ffiffiffi

k
p

�=�Þ; (16)

and we expect that the scaling function PðxÞ is independent
of k. Indeed, taking k ! 1 and � ! 0 limit in (15) while

keeping the scaled variable
ffiffiffi
k

p
�=� fixed we find the scal-

ing function PðxÞ satisfies
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Z 1

0
e�x�

ffiffiffi
x

p
Pð ffiffiffi

x
p Þdx ¼ ð1þ

ffiffiffiffiffiffiffiffiffi
�=2

p
Þ�3: (17)

This Laplace transform (17) can be inverted to yield finally
the expression given in Eq. (1). The asymptotic behaviors
of PðxÞ are given by

PðxÞ �
(
4

ffiffiffiffiffiffiffiffiffi
2=�

p
; x ! 0;

ð3= ffiffiffiffiffiffiffi
8�

p Þx�4; x ! 1;
(18)

which thus exhibits a surprising power law tail.
The distribution PðxÞ describes the typical fluctuations

of dk, which are of order Oðk�1=2Þ for large k. Having
derived it for the special case of exponential jump distri-
bution, it is natural to wonder whether the same function
PðxÞ appears for other jump distributions as well.
Remarkably, our numerical simulations show that PðxÞ is
indeed universal. In Fig. 3(a) we show a plot of the (scaled)

pdf of the gaps Pk;nð�Þ�k�1=2 as a function of the scaling

variable �k1=2=� for three different jump distributions:
exponential, Gaussian, and uniform. The data shown cor-
respond to random walks of n ¼ 105 and k ¼ 90 and they
have been obtained by averaging over 106 independent
trajectories of the random walk. The dotted line corre-
sponds to PðxÞ given in Eq. (1). The good collapse of these
different curves, for �k1=2=� � 1 indicate that the typical

fluctuations of dk;n, of order Oðk�1=2Þ, are universal—

independent of fð�Þ—and described by PðxÞ in Eq. (1).
In contrast to the typical fluctuations that are described

by a universal scaling function, the atypically large fluctu-

ations corresponding to � � �dðkÞ � k�1=2 are not univer-

sal. This pdf pkð�Þ for � � k�1=2 actually gets cut off in a
nonuniversal way, as we have seen before for the exponen-
tial jump distribution. Thus there are two scales of �: a
typical fluctuation which is universal and large fluctuations
that are nonuniversal. This has very interesting consequen-
ces on the behavior of the moments hdpk i as a function of k
(for large k). One conjectures, and this is corroborated by

an exact calculation for the exponential distribution from
Eq. (15),

hdpk i
�p �

8>>>>><
>>>>>:

1ffiffiffiffiffi
2�

p k�1=2; p ¼ 1;

1
2 k

�1; p ¼ 2;

D3ðlogkÞk�3=2; p ¼ 3;

Dpk
�3=2; p 	 4;

(19)

where the amplitudes for p < 3 are universal, while the
amplitudes Dp are not. Our numerical data, shown in

Fig. 3(b), are in agreement with these results (19). Indeed
for p ¼ 1 and p ¼ 2 the value of the scaled moments
hdpk i=�p for different jump distributions do coincide

and exhibit a power law decay with k in agreement with
Eq. (19). The solid lines in Fig. 3 indicate the power law
behavior expected from Eq. (19). On the other hand, for
p ¼ 4, 5 these scaled moments do not coincide and they
exhibit a power law decay with, seemingly the same ex-
ponent, although a precise estimate of the exponent 3=2 for
higher moments is quite difficult.
In conclusion, we have presented exact results for the

gap statistics of symmetric random walks with a finite
variance of step lengths �2 and found a rather rich and
universal behavior independent of the details of the jump
distribution. This presents an interesting and useful ex-
ample of solvable order statistics in a correlated time
series. In view of recent applications of random walks to
fluctuating interfaces in 1þ 1 dimensions [9–11,16], it
will be interesting to see if the universal gap statistics
found here also holds for different boundary conditions
of the interface. It would also be interesting to extend these
results to cases where � is infinite such as in Lévy flights
and also to asymmetric jump distributions.
We warmly thank Zoltan Rácz for very stimulating
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FIG. 3 (color online). (a) Plot of the pdf of the gaps Pk;nð�Þ�k�1=2 as a function of the scaling variable �k1=2=� for three different
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