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Analytical results for random walk persistence
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In this paper, we present a detailed calculation of the persistence exponentu for a nearly Markovian
Gaussian processX(t), a problem initially introduced elsewhere in@Phys. Rev. Lett.77, 1420 ~1996!#, de-
scribing the probability that the walker never crosses the origin. Resummed perturbative and nonperturbative
expressions foru are derived, which suggest a connection with the result of the alternative independent interval
approximation. The perturbation theory is extended to the calculation ofu for non-Gaussian processes, by
making a strong connection between the problem of persistence and the calculation of the energy eigenfunc-
tions of a quantum mechanical problem. Finally, we give perturbative and nonperturbative expressions for the
persistence exponentu(X0), describing the probability that the process remains larger thanX0A^X2(t)&.

PACS number~s!: 82.20.Fd, 02.50.Ey, 05.40.2a, 05.50.1q
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I. INTRODUCTION

A natural quantity that characterizes a given stocha
processX(t) is its persistenceP(t), i.e., the probability that
this signal has kept the same sign up to timet. For a large
class of physical systems~to be defined more precisely be
low!, persistence decays as a power law in time,P(t);t2u

for large t, thus defining the persistence exponentu.
This exponent has been studied in experimental syst

~breath figures@1#, a liquid crystal system mimicking the
two-dimensional Ising model@2#, soap bubbles@3#, etc.!, and
by theoretical means through the exact solution of mod
@4–7#, numerical simulations@8,9#, and general theoretica
methods@10–15#.

Most general theoretical methods restrict themselves
the study of persistence of stochastic processes that
Gaussian. This is partly because Gaussian processes
abundant and simpler. Moreover, in many physical sit
tions, the study of persistence of non-Gaussian signals ca
effectively reduced to that of Gaussian signals@10,12#. Thus,
given a Gaussian processX(t) of zero mean, the basic que
tion is the following: What is the probability that it remain
say, positive up to timet? This is a difficult problem that ha
been studied by mathematicians for a long time@16#. Re-
cently, however, it has created much interest among ph
cists.

One of the general methods recently introduced to tac
this difficult problem, namely, the independent interval a
proximation~IIA ! @12#, assumes that the interval lengths b
tween zeros of the processX(t) are statistically independen
This sole assumption permits the closure of a hierarchy
equations leading to an approximate expression ofu. This
approximation gives very good results for smooth Gauss
processes~i.e., processes with a finite density of zero cro
ings!. Unfortunately, it is not clear how this assumption c
be justified, and whether a Gaussian process can be saa
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priori to be well described by this approximation.
An approximation for the distribution of the time

integrated ‘‘magnetization’’ @13,14#, M (t)5t21*0
t

3sgn„X(u)…du, also leads to good quantitative results f
smooth processes, but suffers from the same concep
problems as the IIA, and is not even guided by physi
intuition. Still, the study of this quantity has lead to the i
troduction of a new quantity, the generalized persiste
@13#, that is the probability thatM (t) remains above a certai
level M0. This quantity which decays with a persistence e
ponent depending continuously onM0 has been studied in
the framework of spin systems and for random walkers@13#.
Finally, a systematice-expansion, which is exact order b
order, has recently been developed for smooth Gaussian
cesses@15#.

However, all these approximate and exact techniques
for processes that are singular, that is for which the den
of zero crossings is infinite. These processes appear in m
physical situations such as nearly Markovian random wa
ers @10# or interface growth@17#.

In this paper, we come back to the first general meth
proposed, that is perturbation theory around a Gaussian
Markovian process@10#. After introducing the principle of
this method~Secs. II–IV!, which shows a deep connectio
between the problems of persistence and the energy spec
of a quantum mechanical problem, we present a symm
argument for the exact form ofu which leads to more gen
eral results for the persistence exponent~Sec. V!. These re-
sults also reveal a connection between IIA and perturba
approaches. In Sec. VI, we extend the perturbative appro
to the case of non-Gaussian processes, further reinforcing
link with standard quantum mechanics. In Sec. VII, we sh
that the various approaches introduced can be applied to
computation of the probability that the signalX(t)/A^X2(t)&
remains higher than any given nonzero levelX0 ~generalized
persistence!. Finally, in Sec. VIII, we illustrate some of the
results obtained in the preceding sections by means of
merical simulations.
1258 ©2000 The American Physical Society
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II. IMPORTANCE OF GAUSSIAN STATIONARY
PROCESSES

The most popular examples of persistent systems h
been taken from the field of coarsening dynamics@18#. For
instance, let us consider an Ising spin system after a que
at very low temperature from a high temperature disorde
state. Domains of positive~essentially11) and negative~es-
sentially 21) magnetization grow with a time-depende
typical length scaleL(t);t1/2. For this system, the spin pe
sistence, that is, the probability that a spin has never chan
sign, or has never been crossed by an interface, is know
decay ast2u, with u5 3

8 in d51 @5#, andu'0.22 in d52
@8–10#.

Due to dynamical scaling, the two-time spin correlati
function only depends on the dimensionless ratio ofL at both
considered times:

^S~ t !S~ t8!&5 f „L~ t !/L~ t8!…. ~1!

This property will be characteristic of a coarsening syste
and relies only on the existence of a unique dynamical len
scale and the dynamical scaling hypothesis@18#. Now, if
L(t) behaves as a power law for large times, all two-po
correlation functions are then functions oft/t8. By consider-
ing t5 ln(t), these correlation functions are then functions
exput2t8u, or more simplyut2t8u, so that they become sta
tionary in the fictitious timet.

Moreover, in many physical systems@10,12,19#, the ques-
tion of computing the persistence for the original dynami
variable@S(t) in the above example# can be reduced to th
study of the persistence of a Gaussian variableX(t). One
possibility is, of course, that the physical variable is a Gau
ian variable itself: this occurs in the study of the persiste
of the diffusion equation@12#, and for the total magnetizatio
persistence of a spin system quenched atT,Tc @20#, or T
5Tc ~in the latter case, the persistence exponent is a
critical exponent@19#!. But in some other cases, includin
the Ising and more generallyO(N) spin systems, the origina
persistence can be shown to be very close to that of a
Gaussian processX(t). For instance, a local spin in an Isin
system behaves essentially as the sign of such a Gau
process,S(t)'sgn„X(t)…, an important result which was firs
used within the Ohto-Jasnow-Kawasaki theory@21# ~also see
Ref. @18#!, and later more precisely formalized by Mazen
and co-workers@22# ~also see Ref.@18#!. To summarize, we
underline the special role played by Gaussian processes
will thus restrict our study to this kind of process.

The next important remark is that if the persistence of
considered Gaussian processX(t) decays ast2u, the persis-
tence in terms of the fictitious timet ~for which this process
is stationary! is expected to decay exponentially
exp(2ut). Thus, in the following we restrict ourselves to th
study of persistence for a stationary Gaussian processX(t)
@23–26#. Note that ifL(t) does not behave as a power law
time, the persistence still decays as a power law ofL(t) as
soon as dynamical scaling is satisfied, and the proper fi
tious time is simplyt5 lnL(t), for which the processX(t) is
again stationary.

The most general equation of motion for a stationa
Gaussian walker reads
ve
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X8~t!52lX~t!1E
2`

t

J~t2t8!h~t8!dt8, ~2!

where h(t) is a Gaussian white noise satisfyin
^h(t)h(t8)&5d(t2t8). Indeed, this equation must be lin
ear to preserve the Gaussian property, and the coefficiel
of X(t) must be constant to preserve stationarity. The l
term of Eq. ~2! accounts for memory effects, involving
memory kernelJ, and must take the form of a convolutio
product, again to preserve stationarity and the Gaus
property~linearity!. Note that it is not necessary to involv
higher derivatives ofX in this equation of motion, as the
can be accounted for by a proper choice of the kernelJ @see
Eq. ~6! below#.

The Markovian case is associated withJ(t)5d(t) ~no
memory effects!, so that the equation of motion becomes

X8~t!52lX~t!1h~t!. ~3!

The velocityX8(t) only involves the noise at the same tim
t. For such a Langevin walker, the two-point correlati
function is simply

^X~t!X~t8!&5 f ~t2t8!, f ~t!5
exp~2lutu!

2l
. ~4!

For convenience, the correlator~and the variableX) has been
normalized such thatf 8(06)57 1

2 , and, from now on, this
will be assumed for all correlators. This will ensure that

v2 f̂ ~v!→1 when v→6`. ~5!

Also note that this Markovian correlatorf has a cusp at the
origin. We will define anearly Markovian Gaussian proces
as one with a correlator which satisfy the above condit
~5!.

In general, the knowledge of the two-point correlatio
function f (t) is equivalent to that of the equation of motio
as the Fourier transform off satisfies

f̂ ~v!5^X̂~v!X̂~2v!&5
uĴ~v!u2

v21l2
. ~6!

This actually shows that any correlatorf̂ (v) can be repro-
duced by a proper~not unique! choice of the memory kerne
Ĵ.

In Secs. III and IV, we will give a more extensive accou
of the perturbative expansion foru, in the case of a nearly
Markovian Gaussian stationary process, a calculation wh
was first introduced in Ref.@10#, and then reproduced in
real time formalism in Ref.@11#. This will be followed~Sec.
IV ! by a resummation of this perturbation theory using
general symmetry argument, and the discovery of an intim
connection between the IIA and perturbative methods.
nonperturbative expression foru is also presented, which
happens to reproduce quantitatively most numerical res
~Sec. VIII!.
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III. PERSISTENCE: MARKOVIAN CASE

Let us now move to the problem of persistence. The pr
ability that a given walker remains on, say, the positive s
of 0 at all times between 0 andb is

P~b!5

E
X.0

DX~t!exp@2S#

E DX~t!exp@2S#

5
Z1

Z0
, ~7!

where

S~b,$X~t!%!5 1
2 E

0

bE
0

b

X~t1!g~t12t2!X~t2! dt1dt2

~8!

is the Gaussian weight associated with the trajectoryX(t),
and g(t12t2) is the inverse of the correlation matrixf (t1
2t2). u is then calculated fromP(b) by taking the limit

u52 lim
b→1`

b21lnP~b!. ~9!

We can impose periodic boundary conditions for the wal
trajectories,X(0)5X(b), which should not affect the valu
of u in the limit of largeb. Indeed, in practice, the proces
will have a finite typical correlation time, equal tol21 in the
example of the Markovian walker, so that this extra co
straint cannot affect the large time persistence regime.

The path integrals of Eq.~7! strongly suggest the connec
tion of this problem to Feynmann integrals in quantum m
chanics or statistical field theory. Let us make this conn
tion more precise. Because of the periodicity of t
trajectories, the Gaussian weight in Eq.~7! can also be writ-

ten

S5
1

2b (
n50

1`

ĝ~vn!uX̂~vn!u2, ~10!

whereĝ(vn)51/f̂ (vn) ~the kernel in the expression ofS is
diagonal in Fourier space! and vn52pn/b are Matsubara
frequencies. First consider a Markovian process for wh
ĝ(v)5v21l2

„the Fourier transform of f (t)
5exp(2lutu)/2l is @v21l2#21

…. S can alternatively be
written as

S5 1
2 E

0

bF S dX

dt D 2

1l2X2Gdt. ~11!

We recognize the action in imaginary time (b is then an
inverse temperature! of a harmonic oscillator of frequencyl.
The periodicity of the paths ensures thatZ0
5Tr@exp(2bH0)# is then the partition function of an har
monic oscillator, andZ15Tr@exp(2bH1)#, is the partition
function of the same harmonic oscillator, but with an infin
wall at the origin~as the particle is constrained to remain
the positive axis!. For large time, the persistence behaves

P~b!;exp@2b~E12E0!#, ~12!
-
e

r

-

-
-

h

s

whereE0 andE1 are the ground state energies of these qu
tum systems. By direct identification, we thus find that

u5E12E0 . ~13!

Moreover,E05l/2, and it is easy to convince oneself th
the ground state wave function ofH1, is the first excited state
of H0 restricted to the positive axis, so thatE153l/2 ~this
argument is very general, and only relies on thex→2x sym-
metry of the potential!. We finally find thatu5l for a Mar-
kovian process. This is a well-known fact@23–26#, that can
be simply illustrated for the usual Langevin Markovia
walker, for which the equation of motion reads~in actual
time t) dx/dt5h(t). For such a random walk, the persi
tence exponent is known to be12 @23–26#. Let us reproduce
this result within our approach. The two-point correlatio
function is easily computed:̂x(t)x(t8)&5min(t,t8), and the
normalized variableX(t)5x(t)/A^x(t)2&, has a correlator,
^X(t)X(t8)&5(t8/t)1/2, for t>t8. This correlator is a func-
tion of the ratio of the two times, so that it is stationary aft
the change of variablet5 ln(t), becoming ^X(t)X(t8)&
5exp@21

2ut2t8u#. Applying the above calculation, we re
cover the resultu5l5 1

2 .

IV. PERTURBATION AROUND A GAUSSIAN
MARKOVIAN PROCESS

Of course, this heavy machinery is not introduced to d
with the well understood Markovian case, but rather to
applied to the case of a nearly Markovian walker, for whi
no result exists. Thus, let us consider such a walker
which

f ~t!5
1

2l
@exp~2lutu!1f~t!#, ~14!

wheref(t) is assumed to be a ‘‘small perturbation’’ to th
Markovian correlator. In Fourier space this can be written
first order inf,

ĝ~v!5 f̂ ~v!215v21l22ĥ~v!,

ĥ~v!5
~v21l2!2

2l
f̂~v!. ~15!

In the general case, the denominatorZ0 of Eq.~7! can be

exactly computed, as any unconstrained Gaussian inte
and is proportional to det1/2@ f (t i2t j )#. After taking the
proper limit,E052 limb→1`b21lnZ0(b), one finds

E052
1

2pE0

1`

ln„v2 f̂ ~v!…dv. ~16!

Note that this integral converges thanks to the relation
pressed in Eq.~5!. To be consistent with the perturbativ
expansion forE1 to come, we can writeE0 up to first order
in f,

E05
l

2
2

1

4plE0

1`

~v21l2!f̂~v!dv1O~f2!, ~17!
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the first term being the previously discussed Markovian
sult: that is, the ground state energy of an harmonic oscilla
of frequencyl. The computation ofZ1 ~or E1) is still a
formidable task, as the domain of integration of the Gauss
integral only involves positiveX(t), for all t. The natural
impulse is to writeS5Sosc.1dS, whereSosc. is the harmonic
oscillator action associated with a Markovian process@Eq.
~11!#, and,

dS52 1
2 E

0

bE
0

b

X~t1!h~t12t2!X~t2!dt1dt2 , ~18!

52
1

2b (
n50

1`

ĥ~vn!uX̂~vn!u2, ~19!

where the Fourier transform ofh is given in Eq.~15!. dS is

linear inf, and can be considered as a small perturbatio
Sosc.. We can now use the standard first order cumulant
pansion of quantum mechanics~or statistical field theory!,
leading to

E15
3l

2
1 lim

b→1`
^dS&wall1O~f2!, ~20!

where the average is to be taken using the Boltzmann we
associated with the harmonic oscillator of frequencyl, with
an infinite wall at the origin. Let us denote byu l̂ & the eigen-
states of this quantum system~as opposed tou l &, the eigen-
states of the unconstrained oscillator!, associated with the
eigenenergies « l5„(2l 11)11/2…l5(2l 13/2)l ( l>0).
One can then write

^0̂uX̂~2vn!X̂~vn!u0̂&5E
0

1`

2 cosvnt

3(
l 50

1`

^0̂uXu l̂ &u2e2~« l2«0!tdt. ~21!

u^0̂uXu l̂ &u2 can be computed for the harmonic oscillator w
a wall, using the fact that̂xu l̂ &5A2^xu2l 11& for x>0, and
exploiting standard properties of Hermite polynomials. T
complete calculation is performed in Appendixes A and
The final result reads

^0̂uX̂~2vn!X̂~vn!u0̂&5
8

l2
dS vn

l D1(
j 51

1`
4 jc j

4 j 2l21vn
2

,

~22!

the Dirac peak coming from thel 50 term. The coefficients
cj involved in this relation read

cj5
4

p22 j~2 j 11!!
S ~2 j !!

j ! ~2 j 21! D
2

. ~23!

Finally, the sum overn in dS becomes an integral in theb
→1` limit, leading to the final expression foru5E12E0:
-
or

n

to
x-

ht

e
.

u5l2
1

2pE0

1`

V̂~v!f̂~v!dv1O~f2!. ~24!

The kernelV̂ is defined by

V̂~v!5
~v21l2!2

2l F 8

l
d~v!1(

j 51

1`
4 jc j

v214 j 2l2
2

1

v21l2G .

~25!

As noted in Ref.@11#, this cumbersome expression in term
of Fourier transforms has a remarkably compact form wh
expressed in the inverse Fourier space. Indeed, the func
between brackets is just the Fourier transform of,

U~t!5
1

l (
j 50

1`

cjexp~22 j lutu!2
1

2l
exp~2lutu!,

~26!

with c054/p, so that V̂ is the Fourier transform of (1
2l)(2]t

21l2)2U(t). This allows us to recast the precedin
result into the form

u5l2
1

2lE0

1`

f~t!~2]t
21l2!2U~t!dt1O~f2!.

~27!

A simple manipulation on thecj ’s ~see Appendix A! allows
one to resum the series (2]t

21l2)2U(t), exactly, finally
leading to

u5lF12
2l

p E
0

1`

f~t!@12exp~22lt!#23/2dtG1O~f2!.

~28!

We can generalize this expression when the constrain
X(t) is X(t)>X0, instead ofX(t)>0 @13,27#. Indeed, for
the Brownian walker@ f (t)5exp(2utu/2), such that^X2&
5 f (0)51], it is known ~see Sec. VII! that u satisfies
D2u(X0)50 @27#, whereD2u is a parabolic cylinder func-
tion. We can expand this expression for smallX0, leading to
uBrownian51/21X0 /A2p1O(X0)2. If we perturb around a
general Markovian process„f (t)5(1/2l)exp(2lutu)…, we
then obtain another perturbative contribution for the exp
nent u ~valid in the limit of small X0), which should be
added to the result of Eq.~28!:

du~X0!52l
X0

A2p^X2&
1O~X0!25l3/2

2X0

Ap
1O~X0!2.

~29!

V. RESUMMATION: A SYMMETRY ARGUMENT

A. Resummation in time

Consider a Gaussian process of correlatorf and persis-
tence exponentu. Let us assume that we have been able
resum all terms of the perturbative expansion which cont
only one time integral. Very generally, one can thus write
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u5E
0

1`

A„f ~t!/ f ~0!,t…dt. ~30!

The variablef (t)/ f (0) appears due to the fact thatu should
not depend on the correlator normalization@here f 8(06)
571/2, but f (0)51 was chosen in Refs.@11,12##.

If f (t) is changed intof (at), it is clear that the persis
tence exponent is simply changed intoau. Using this re-
mark, we obtain,

au5E
0

1`

A„f ~at!/ f ~0!,t…dt, ~31!

which shows, after a simple change of variable, that, for a
process and anya, one must have

u5E
0

1`

A~ f ~t!/ f ~0!,t/a! dt/a2. ~32!

This strongly suggests thatu can in fact be written as

u5E
0

1`

B„f ~t!/ f ~0!…
dt

t2
. ~33!

Assuming now thatf (t) is close to a Markovian proces
with an associated smallf(t), one can develop Eq.~33!,
leading to

u5E
0

1`

B„exp~2lt!…
dt

t2
1E

0

1`

f~t!B8„exp~2lt!…
dt

t2

1O~f2!. ~34!

In this perturbative limit, Eq.~34! should coincide with Eq.

~28!, leading to

B8~exp2X!52
2

p

X2

~12exp22X!3/2
, ~35!

or, after making the change of variableu5exp2X,

B8~u!52
2

p

ln~u!2

~12u2!3/2
. ~36!

For the integral equation~33! to converge, one should hav
B(1)50, finally leading to the final result of Eq.~33!, with B

given by

B~u!5
2

pEu

1 ln2~v !

~12v2!3/2
dv. ~37!

Note that this expression is not only defined for a nea
Markovian process, for whichf has a cusp att50, but ac-
tually converges for any process, for which

f ~t!/ f ~0!21;utum when t→0, ~38!

for any m. 2
3 @asB(12«);«3/2#. Smooth processes~with a

continuous velocity! are associated withm52, and the local
y

y

density of a charge distribution evolving according to t
simple diffusion~or heat! equation corresponds to this ca
@12#. As we have argued in detail,m51 corresponds to
nearly Markovian processes. Finally, other values ofm,2
correspond to singular walkers for which the fractal dens
of the set ofX50 crossing times is 12m/2. Such processe
have been encountered in the study of out of equilibri
atomic surfaces, for whichX(t) is the local height of the
substrate@17#.

A nice consistency check consists of showing that the fi
term in Eq.~34! is equal tol, the Markovian value foru.
This is simply done by performing an integration by pa
using the explicit expression ofB, leading to

uMarkov5
2l

p E
0

1` ~lt!2e2lt

~12e22lt!3/2

dt

t
52

2l

p E
0

1 lnu

~12u2!3/2
du

5
2l

p E
0

1 du

A12u2
5l, ~39!

the last integral being obtained through another integra
by parts.

The argument presented above was motivated by the
lowing important remark: for a given correlatorf, the pertur-
bationf, or equivalently, the function exp(2lutu)/2l around
which the perturbation is started, is actually quite ill define
If we knew the complete perturbation expansion, start
from any value ofl we should obtain the same result. No
that in standard field theory, one usually perturbs aroun
system which is solvable for a certain value~usually 0! of the
coupling constant: there is a unique way of performing
perturbative expansion. Thus it is natural to ask whet
there is an optimal choice for the starting value ofl. A very
natural choice is to take forl the value which cancels th
first order perturbative term. In other words, we take t
‘‘best’’ starting Markovian correlator such that the first ord
contribution vanishes. This gives another nonperturbative
pression foru ~that we may call ‘‘variational’’ or self-
consistent perturbative!, which must satisfy

E
0

1` f ~t!/ f ~0!2exp~2ut!

@12exp~22ut!#3/2
dt50. ~40!

This equation always has a solution, as the expression in
~40! is clearly positive foru→1`, and goes to2` when

u→0. The expression in Eq.~40! is defined for anym. 1
2 , in

fact a larger domain than the fully resummed formula of E
~37!.

Note that we can write the resummed expression in
similar form,

E
0

1`

@B„f ~t!/ f ~0!…2B„exp~2ut!…#dt50, ~41!

which after integration by parts, takes the form

E
0

1` K@ f ~t!/ f ~0!,exp~ut!#

„12 f 2~t!/ f 2~0!…3/2
dt50, ~42!
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where the precise form of the known kernelK is of no real
interest. This last remark allows us to make a link with t
IIA result. Within this scheme, based on the approximat
that the intervals between the zeros of the process are i
pendent, it can be shown for smooth processes (m52) thatu
must satisfy@12# @with the normalizationf (0)51#

12
pu

2A2 f 9~0!
F11

2u

p E
0

1`

exp~ut!sin21
„f ~t!…dtG50.

~43!

If one integrates by parts this expression twice, it takes
following form:

E
0

1`

exp~ut!
@ f 9~12 f 2!1 f f 82#~t!

„12 f 2~t!…3/2
dt5A22 f 9~0!.

~44!

This expression now looks to be of the same type as the o
found within the perturbative approach. However, its dom
of definition remains strictlym52.

Finally, let us mention that when the constraint onX(t) is
X(t)>X0 @13,27# instead ofX(t)>0, the following pertur-
bative correction should be added to the preceding exp
sions foru @see Eq.~29!#:

du~X0!5u~X050!
2X0

A2p f ~0!
1O~X0!2. ~45!

B. Resummation in frequency space

The same argument as above can be applied to the ex
sion ofu in frequency space. This time, this will allow us
resum all terms in the perturbation theory involving only o
frequency integration. Again, we assume thatu can be writ-
ten

u5E
0

1`

C„ f̂ ~v!,v…dv. ~46!

We still assume thatf has a finite derivative in 01, keeping
the normalization 2u f 8(01)u51.

If f (t) is changed intof (at)/a ~to preserve the normal
ization!, f̂ (v) is changed intof̂ (v/a)/a2, and it is again
clear that the persistence exponent is simply changed
au. Using this remark, we obtain:

au5E
0

1`

C„a22 f̂ ~v/a!,v…dv, ~47!

which shows, after a simple change of variable that, for a
process and anya, one must have

u5E
0

1`

C„a22 f̂ ~v!,av…dv. ~48!

This again strongly suggests thatu can in fact be written as
n
e-

e

es
n

s-

es-

to

y

u5E
0

1`

D„v2 f̂ ~v!…dv. ~49!

Note that this property is shared by the exact and gen
expression ofE0, given in Eq.~16!.

Now, one can consider a nearly Markovian process,
which the correlator satisfies Eq.~15!. One can develop Eq
~49! up to first order inf̂ and identify the result to the
perturbation result of Eqs.~24! and ~25!. The calculation is
elementary, and leads to

u5
4

p
f̂ 21/2~0!1

1

2pE0

1`

Ŵ„v2 f̂ ~v!…dv, ~50!

Ŵ~x!5 (
n51

1`
cn

n
ln„114n2~x2121!…1 ln~x!. ~51!

The first term arises from thed term in the kernelV̂, and can
also be written as (8/p)*0

1`d„vu f̂ (v)u1/2
…dv. Again, it is

easy, using relations given in Appendix A, to check that
Markovian valueu5l is recovered for the Markovian cor
relator f̂ (v)5(v21l2)21. Note finally that this procedure
permits the recovery of the exact expression ofE0, which is
produced by the last ln(x) term in the kernelŴ.

VI. PERTURBATION AROUND A NON-GAUSSIAN
MARKOVIAN PROCESS

When writingS5Sosc.1dS, we deliberately chose to per
turb around a Gaussian Markovian walker, or around
quantum action of an harmonic oscillator in terms of t
pseudoactionS. This is quite arbitrary, and in principle th
action of any~preferably solvable! quantum system would
have worked. The stochastic process associated to suc
action @each trajectory $X(t)% being weighted by
exp2„S@$X(t)%#…# is Markovian but, in general, non
Gaussian, as the only Gaussian quantum action is that
harmonic oscillator.

So, in this section, we consider a stationary stocha
processX(t) of any kind, associated with the weight o
pseudoactionS, and a quantum mechanical system for whi
the action isSQ (Q for ‘‘quantum’’!. This quantum system
could be a harmonic oscillator, a particle in a square box,
more widely, any system preferably solvable for the act
perturbative calculation to be tractable.

Then, settingS5SQ1dS, and reproducing exactly the
calculations of the beginning of Sec. IV, we end up with t
following perturbative expression foru:

u5E1
Q2E0

Q1 lim
b→1`

@^dS&12^dS&0#1O~dS 2!, ~52!

whereE0
Q ~respectively,E1

Q) is the ground state energy o
the unconstrained~respectively, with an infinite wall atX
50) quantum system.^ &0 and^ &1 denote quantum average
performed using the Hamiltonian of the quantum syste
without and with the infinite barrier at the origin, respe
tively.
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We have already implicitly used Eq.~52! in Sec. IV,
whereSQ was chosen to be the Gaussian quantum actio
a harmonic oscillator. Let us now illustrate Eq.~52! by taking

a non-Gaussian system as the starting quantum system
simplest possible example is that of particle in a box, withX
restrained to the interval@2b,b#. We now use this simple
non-Gaussian system to compute approximately the valu
u for a Gaussian process associated with the Gaussian w
S defined in Eq.~8!.

Let us callu l & ( l>0), the eigenstates of a quantum pa
ticle in the box@2b,b#, associated with the eigenenergi
« l5

1
2 k0

2( l 11)2, with k05p/2b. The eigenstates of the con

strained system~a particle in the box@0,b#) are the u l̂ &
5A2u2l 11& ( l>0). To evaluatêdS&12^dS&0, one essen-
tially needs to compute ^0uX(2vn)X(vn)u0& and

^0̂uX(2vn)X(vn)u0̂&. This is a straightforward task usin
identities similar to Eq.~21!, where the scalar products

^0uXu l & and^0̂uXu l̂ & are even easier to compute for a partic
in a box ~see Appendix B!. Introducing

k̂~vn!5^0uX~2vn!X~vn!u0&5
256

p2 (
j 50

1`
ajbj

k0
4bj

21vn
2

,

~53!

with

aj5
2~ j 11!2

~2 j 11!4~2 j 13!4
,

and

bj5
1

2
~2 j 11!~2 j 13!, ~54!

we obtain the following expressions forE1 andE0 (u5E1
2E0):

E05
k0

2

2
1

1

2pE0

1`S k̂~v!

f̂ ~v!
21D dv ~55!

and

E152k0
21

p2

32
k0

2S 1

k0
4 f̂ ~0!

2
12

152p2D ~56!

1
1

32pE0

1`S 1

f̂ ~v!
2

1

k̂~v!
D k̂~v/4!dv. ~57!
of

he

of
ght

-

For a given correlatorf̂ (v), it is not clear what the
‘‘best’’ starting value fork0 ~or for the box sizeb) is. Let us
propose two natural choices. We can takek0 such that the
first order perturbation vanishes, which leads tou53k0

2/2.
An alternative choice is to takek0 such thatE1 is minimum,
as it can be shown thatE1(k0) has always such a minimum
for a finite k0. In fact, the variational inequalityE1<2k0

2

1 limb→1`^dS&1 is exact for anyk0, which intuitively vali-
dates this choice ifk0.

VII. GENERALIZED PERSISTENCE

So far, we have essentially considered the probability t
the signalX(t) has never changed sign. In fact, it seem
natural to study the more general probability that the sig
always remains above a certain levelX0. WhenX0Þ0, this
defines theX0-level persistence. This generalized persisten
has already been introduced for the simplest Markov
Gaussian walker@27# and spin systems@13#. Moreover, at
least in the framework of the Mazenko approximation@22#,
there is a connection between the persistence of theq Potts
model @5,6,9# ~the probability that a given site always re
mains in a given phase! and theX05F(q) level persistence
of a certain Gaussian variable@28#.

Let us take the example of the Gaussian Markov
walker, associated, within our formalism, with the action o
harmonic oscillator.E1(X0) is now the ground state energ
of a harmonic oscillator with an infinite barrier atX0, for
which the eigenstates can be expressed in terms of a p
bolic cylinder function@27# ~generalization to a continuou
index of Hermite polynomials!. E1 is then implicitly defined
by imposing that the ground state eigenfunction has a uni
node atX5X0. If we come back to real timet5expt ~see
Sec. III!, X0-level persistence for the Langevin walker sat
fying dx/dt5h(t) is defined as the probability thatx(t) al-
ways remained greater thanX0A^x2(t)&5X0At. This decays
as a power law of time with exponentu(X0)5E1(X0)2E0.

If we were to compute theX0-level persistence exponen
u(X0) for a Gaussian process using the perturbation the
formalism, we would have to evaluate scalar products l

^0̂uXu l̂ &, whereu l̂ & are the eigenstates of the harmonic osc
lator with an infinite barrier atX5X0. Unfortunately, this
seems to be an analytically untractable problem. Howe
using the formalism of Sec. VI we only have to evalua
brackets involving eigenstates of a particle in the b
@X0 ,b#, which are explicitly known. The calculation i
straightforward~see Appendix B!, and leads to
E1~X0!5
2k0

2

~12h!2
1

p2

32
k0

2~11h!2S 1

k0
4 f̂ ~0!

2
12

152p2D ~58!

1
k0

2~12h!4

32p E
0

1`S 1

f̂ ~v!
2

1

k̂~v!
D k̂„v~12h!2/4…dv, ~59!
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whereh5X0 /b, and k̂ has been defined in Eq.~53!. As a
check, we can see that forh50 ~i.e., the wall is at the origin!
we recover the result of Eq.~57!, and for h521 ~i.e., the

wall is at X052b, which corresponds to no effective con
straint!, we recover the expression forE0 of Eq. ~55!. Again,
for a given processX and a given levelX0 , k0 can be fixed
by imposing that the first order perturbation term inu van-
ishes, or by taking the value ofk0 for which E1(X0 ,k0) is
minimum.

VIII. NUMERICAL SIMULATIONS

We now illustrate the various analytical results obtain
in the preceding sections by means of numerical simulatio

A. Nearly Markovian processes

As already mentioned in Sec. I, a local Ising spin evolvi
after a quench atT50, from the high temperature disordere
phase, essentially behaves as the sign of a Gaussian var
Mazenko approximation@22# then permits the calculation o
the two-time correlator of this Gaussian process. It happ
that, in one dimension, this approximation recovers the ex
expression of̂S(t)S(t8)& @18#, leading to the following form
of the correlatorf when expressed in the fictitious timet
5 ln(t):

f ~t!5A 2

11exp~t!
. ~60!

The exact value ofu in d51 is u53/850.375 @5#. The
‘‘variational’’ and resummed perturbative expression of E
~40
! and~33!–~37!, respectively, lead touvar50.3595 . . . and
upert50.3677 . . . . Theprocess associated with the correla
given by Eq.~60! has been actually simulated using the Fo

rier space form of Eq.~2!. We have obtainedu50.355
60.005, in extremely good agreement with the theory. T
small discrepancy with the exact result 0.375 for the Is
model is attributed to the fact that the actual process s
that S(t)5sgn„X(t)… is not strictly Gaussian. However
seems that this non-Gaussian effect is rather small.

We have also tested our theoretical expressions usin
correlator introduced in Ref.@10#:

f ~t!5 2
5 exp~2t!1 3

5 exp~22t!. ~61!

We founduvar51.4855 . . . andupert51.4802 . . . , again in
good agreement with the numerical resultu51.48160.005.

B. Other singular processes

Interesting examples of singular correlators withm,2
and mÞ1 ~see the definition ofm in Sec. V! have been
introduced in the framework of dynamical surfaces descri
by the time-dependent equation@17#

]h

]t
52~2¹2!z/2h1h, ~62!
d
s.

ble.

ns
ct

.

r
-

e
g
h

a

d

whereh is the local height of the fluctuating interface, andh
is Gaussian white noise. The equation being linear,h(x,t) is
a Gaussian variable, for which we take the initial conditi
h(x,0)50. To define the first passage problems of intere
consider the quantity

P~ t0 ,t !5Prob@h~x,s!Þh~x,t0! ;s:t0,s,t01t#,
~63!

and defineu0 andus as

p0~ t ![P~0,t !;t2u0, t→1`, ~64!

ps~ t ![ lim
t0→1`

P~ t0 ,t !;t2uS, →1`. ~65!

p0 measures the first passage exponent of the growing in
face, whereasps contains the relevant information when th
interface has entered the steady state (t0→1`).

The correlators associated with these two persiste
problems are~when expressed as functions of the fictitio
time t) @17#

f 0~T!5cosh~t/2!m2usinh~t/2!um, ~66!

f s~T!5cosh~mt/2!2 1
2 u2 sinh~t/2!um, ~67!

respectively, and both satisfy 12 f 0,s(t);tm, for small t,
with m512d/z (m512(d12)/z for a volume conserving
noise!. We now simply treatm as a free parameter. Using
connection to the fractional Brownian walker, it has be
conjectured thatus512m/2 @17#, which has been confirmed
by numerical simulations.

Let us take two typical values form. For m5 3
2 , we find

u0,var50.2088 . . . andu0,pert50.2146 . . . , which compare
well to the numerical valueu050.20160.005. For the case
of the steady interface, the conjectured persistence expo
is us5

1
4 , in good agreement with the simulations (us

50.24760.005). Variational and perturbative methods a
reasonably accurate, givingus,var50.2583 . . . and us,pert
50.2644 . . . . Note that the first order perturbation expre
sion of Eq.~28! exactly reproduces the conjectured value
us .

We have also tested the casem5 3
4 , which is dangerously

close to the limit of the validity domain of our variationa
(mvar5

1
2 ) and perturbative (mpert5

2
3 ) expressions. The nu

merical value ofu0 is u050.8560.01, for which the varia-
tional approach givesu0,var50.8852 . . . . Not surprisingly,
the resummed perturbation leads to a bad result (u0,pert
'1.1). The conjectured value forus is us50.625, while the
simulation of the process leads tous50.62560.005, and that
of the associated discrete solid-on-solid model leads tous
50.63560.005 ~see Ref.@17# for details!. We find a quali-
tatively correct value ofus,var50.6662 . . . , but the re-
summed perturbation fails again (us,pert'0.84).

C. Smooth processes

For singular processes (m,2), it was not possible to
compare our variational and perturbative results to the
expressions of Eqs.~43! and~44!, which are only defined for
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smooth processes. One of the most spectacular exampl
smooth Gaussian processes has been given in Ref.@12#: con-
sider an initially random spatial distribution of charges
zero average,r(x,t50). It then evolves according to th
simple diffusion equation,

]r

]t
~x,t !5¹2r~x,t !. ~68!

The persistence is defined as the probability that the lo
charge at a givenx never changes sign. It decays as a pow
law, definingud , the dimension-dependent persistence ex
nent.

The IIA @12# ~as well as the specific method of Ref.@14#!
is in amazing agreement with numerical simulations. For
stance, ind51, u IIA 50.1203 . . . , to becompared to the
numerical valueu50.120760.0005. The agreement seem
to be of the same order in any dimension. Smooth proce
are in principle beyond the range of application of pertur
tive methods. Still, the variational approach remains qual
tively correct, leading touvar50.1428 . . . for the one-
dimensional diffusion equation, whereas the resumm
perturbation theory is again quite bad (upert50.1612 . . . ).

Another example of smooth process is the Gauss
walker satisfyingdnX/dtn5h(t), for n>2 (n51 being the
Markovian Brownian walker which is singular!. The casen
52 corresponds to a particle submitted to a random fo
for which the persistence exponent is known to beu5 1

4 @29#.
The two-time correlator when expressed in the fictitious ti
reads

f ~t!5 3
2 exp~2utu/2!2 1

2 exp~23utu/2!. ~69!

The IIA leads to u IIA 50.2647 . . . , whereas uvar
50.2857 . . . , andupert50.3198 . . . .

D. Perturbation around the action of a particle in a box

Let us briefly give a few applications of our expressio
of Eqs.~55!, ~57!, and~59!.

As a simple test, they have been applied to the case o
Markovian walker withl5u5 1

2 , and X050. The ‘‘varia-
tional’’ approach, which consists of taking the size of t
box ~or k0) such that the first order perturbation vanish
leads to 2uvar51.0074 . . . . For the correlator given by
Eq.~61!, we founduvar51.4323 . . . , in fair agreement with
simulations and perturbative approaches around a Marko
process.

Finally, we have tested Eq.~59! in the case of the Brown
ian walker ~for which l5 1

2 ), for X0Þ0. In this case, it is
known thatu satisfiesD2u(X0)50 @27#, whereD2u is a para-
bolic cylinder function. ForX05 1

3 @comparable to^X2&
5 f (0)51, for l5 1

2 #, we found uvar50.7032 . . . , to be
compared to the exact valueu50.6440 . . . . Note that the
perturbative expression of Eq.~45! leads tou50.6330 . . . .

IX. CONCLUSION

In this paper, we have stressed the importance of stud
persistence for Gaussian stationary processes, as the ca
tion of u for many physical systems can be often mapped
the persistence problem for this kind of process. We h
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then extended the perturbative approach around a Marko
process, introduced in Ref.@10#. We have obtained re
summed perturbative expressions@Eqs.~34!, ~37!, and~51!#
and a new self-consistent perturbative~or variational! ex-
pression for the persistence exponent@Eq. ~40!#. It seems that
this variational result is more effective in reproducing n
merical results, sometimes with impressive accuracy.
have also shown that all these expressions take a sim
form as the alternative result of the IIA, which only applie
to smooth processes. We have also given perturbative
pressions for theX0-level persistence exponent@Eqs. ~29!
and~45!#. Finally, we have shown that this type of perturb
tive approach is even more general, as the starting pro
around which we decide to perturb can be any Markov
process associated with a~preferably solvable! quantum
problem. We have illustrated this point by explicitly derivin
a variational expression for theX0-level persistence expo
nent, when the starting quantum system is chosen to b
particle in a bounded box@Eqs.~55!, ~57!, and~59!#.

Finally, we conclude by pointing out that our perturbati
and variational techniques have been useful in a wide var
of problems. This includes the calculation of the surviv
probability of a mobile particle in a fluctuating field@30#, and
the calculation of global persistence exponent in critical s
systems@to compute the order«25(42d)2 perturbative cor-
rection @11##, and for directed percolation@31#.
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APPENDIX A

We want to computecj5u^0̂uxu ĵ &u2, whereu ĵ & is the j th
eigenstate of the harmonic oscillator with an infinite barr
at the origin,

^ ĵ ux&5A2^2 j 11ux&5
A2

A22 j 11~2 j 11!!Ap
H2 j 11~x!e2x2/2.

~A1!

The extra factorA2 is due to the fact that̂ ĵ ux& is only
defined on the interval@0;1`#, but should still be normal-
ized. One then finds

cj5
4

p22 j~2 j 11!!
I j

2 , ~A2!

whereI j5*0
1`x2e2x2

H2 j 11(x)dx can be readily calculated
using the properties Hn11(x)52xHn(x)22nHn21(x),
Hn8(x)52nHn21(x), and*0

1`e2x2
Hn(x)dx5Hn21(0). This

yields

I j5H2 j~0!14 jH 2 j 22~0!5~21! j 11
~2 j !!

j ! ~2 j 21!
, ~A3!

which finally gives the result of the main text.
The cj ’s satisfy the recursion relation
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cj 11

cj
5

~2 j 21!2

~2 j 13!~2 j 12!
, ~A4!

which shows that the generating functionf (x)5( j 50
1` cjx

j

satisfies the hypergeometric differential equationx(12x) f 9
1 3

2 f 82 1
4 f 50. The~unique! solution with f (0)5c054/p is

given by

f ~x!5
4

p
FS 2

1

2
,2

1

2
,
3

2
,xD , ~A5!

which yields the identities( j 50
1` cj5 f (1)5 3

2 and ( j 50
1` jc j

5 f 8(1)5 1
4 .

Now definingU(t) as in Eq.~26!, we obtain,

1

2l
~2]t

21l2!2U~t!5
l2

2 (
j 50

1`

Cjexp~22 j lutu!

5
l2

2
S@exp~22lutu!#, ~A6!

whereCj5(4 j 221)2cj satisfies@using Eq.~A4!#

Cj 11

Cj
5

j 1 3
2

j 11
. ~A7!

We recognize the recursion relation obeyed by the coe
cients of the series expansion of the functionS(x)5(4/
p)(12x)23/2, which leads to the final result of Eq.~28!.

APPENDIX B:

In this appendix, we write the general equation forE0 and
E1, when the perturbation theory is applied toS5SQ1dS.
SQ is assumed to be the action associated with the quan
HamiltonianH0, with eigenenergies« l and eigenstatesu l &.
The associated Hamiltonian with an infinite wall at the orig
is H1, with eigenenergies«̂ l and eigenstatesu l̂ &. When the
potential is symmetric with respect toX50, one simply has

^xu l̂ &5A2^xu2l 11& and «̂ l5«2l 11.

1. Equation for E0

The lower ‘‘energy’’ E0 is a functional of the inverse
correlatorĝ(v)51/f̂ (v):

E05«01 lim
b→1`

1

2b (
n50

1`

„ĝ~v!2ĝ0~v!…

3^0uX~2vn!X~vn!u0&, ~B1!
-

m

where

k̂~vn!5ĝ0
21~vn!5^0uX~2vn!X~vn!u0& ~B2!

5E
0

1`

2 cosvnt(
l 50

1`

u^0uxu l &u2e2~« l2«0!tdt

5(
l 51

1` 2dlml
2

dl
21vn

2
, ~B3!

with dl5« l2«0 , ml5u^0uxu l &u (m050 due to the sym-
metry of the potential!. Note thatk̂ is nothing more than the
Fourier transform of the two-time correlation function of th
position of the considered quantum particle.

Then, transforming the sum over Matsubara frequenc
into an integral, one obtains

E05«01
1

2pE0

1`S k̂~x!

f̂ ~x!
21D dx. ~B4!

Due to the sum rule( l 51
1` 2dlml

251, valid for any Hamil-
tonian, the integrand tends to 0 asx→1`. In the text, we
have considered two examples for the starting quantum
relator k̂: The harmonic oscillator of frequencyl, « l

5l( l 1 1
2 ), dl5l l , ml5(2l)21/2d l ,1 , and k̂(v)5(v2

1l2)21, which directly leads to Eq.~17!, obtained in Sec.
IV by expanding the exact result of Eq.~16!; and the particle

in a box of width 2b5p/k0 , « l5
1
2 k0

2( l 11)2, and dl

5 1
2 k0

2l ( l 12). After an elementary calculation involving th
eigenstates of a particle in a box, we obtain,

ml5@12~21! l #
1

pk0

4~ l 11!

l 2~ l 12!2
,

k̂~v!5
256

p2 (
j 50

1`
ajbj

k0
4bj

21v2
, ~B5!

with

aj5
2~ j 11!2

~2 j 11!4~2 j 13!4
, bj5

1

2
~2 j 11!~2 j 13!.

~B6!

We then recover the expression of Eq.~55!.
Note that the following sum rules have been used in

main text:

256

p2 (
j 50

1`

ajbj51,
256

p2 (
j 50

1`

ajbj
25

1

2
,

256

p2 (
j 50

1`
aj

bj
5

5

4
2

p2

12
. ~B7!

2. Equation for E1

The ‘‘energy’’ E1 is also a functional of the inverse co
relator ĝ(v)51/f̂ (v):
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E15 «̂01 lim
b→1`

1

2b (
n50

1`

„ĝ~vn!2ĝ0~vn!…

3^0̂uX~2vn!X~vn!u0̂&, ~B8!

wherek̂5ĝ0
21 has been defined in Eq.~B2!. Let us now in-

troduce,

K̂~vn!5^0̂uX~2vn!X~vn!u0̂&, ~B9!

5E
0

1`

2 cosvnt(
l 50

1`

u^0̂uxu l̂ &u2e2~ «̂ l2 «̂0!tdt

5(
l 50

1` 2d̂l m̂l
2

d̂l
21vn

2
. ~B10!

K̂ is the two-time correlator of the position of the quantu
particle in the presence of the wall. As before,d̂l5 «̂ l

2 «̂0 , m̂l5u^0̂uxu l̂ &u. Note that, contrary to the calculatio
for E0, the l 50 contribution in the sum above is nonzero
that, strictly speaking, this term should be writte
2pm̂0

2d(vn). This term has been written under this form
the main text.

Finally, the general expression ofE1 reads

E15 «̂01
1

2pE0

1`S 1

f̂ ~x!
2

1

k̂~x!
D K̂~x!dx. ~B11!
s

ev

A

ys
We can again make this result more explicit for both cons
ered quantum systems: the harmonic oscillator of freque
l, «̂ l5l(2l 1 3

2 ), d̂l52l l , andm̂l5Acl , which leads to the
expressions of Eqs.~22!–~25!; and the particle in a box o
width 2b5p/k0. In this latter case,K̂ is the Fourier trans-
form of the two-time correlator of the position of a particle
a box of sizeb5p/2k0. It is then clear using Eq.~B5! that

K̂~v!5
1

16
k̂~v/4!1

p3

8k0
2
d~v!, ~B12!

the extra Dirac peak coming from the fact that the operatoX
now has a finite average, as the particle belongs to the in
val @0,b#. This immediately leads to the formula of Eq.~57!,
using k̂(0)5(152p2)/12k0

4.
When the constraint isX>X0, with X05hb ~as in Sec.

VII !, the quantum particle now ‘‘lives’’ in a box of size (1
2h)b, and the expression forK̂ is changed accordingly
leading to

K̂~v!5
~12h!4

16
k̂S v

~12h!2

4 D1
p3

8k0
2 ~11h!2d~v!.

~B13!

This immediately leads to the result of Eq.~59!.
ns.

y,

ay,

ys.

nd

.
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