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Abstract
A novel discrete growth model in 2+1 dimensions is presented in three
equivalent formulations: (i) directed motion of zigzags on a cylinder,
(ii) interacting interlaced TASEP layers and (iii) growing heap over 2D substrate
with a restricted minimal local height gradient. We demonstrate that the coarse-
grained behavior of this model is described by the two-dimensional Kardar–
Parisi–Zhang equation. The coefficients of different terms in this hydrodynamic
equation can be derived from the steady state flow-density curve, the so-called
fundamental diagram. A conjecture concerning the analytical form of this
flow-density curve is presented and is verified numerically.

PACS numbers: 05.40.−a, 05.70.Np, 68.35.Fx

It is well established in the last two decades [1–4] that the one-dimensional Kardar–Parisi–
Zhang (KPZ) equation [5] adequately describes the long-range dynamics of a collective motion
of hopping particles on a line known as the ‘asymmetric simple exclusion process’ (ASEP)
[6–9]. Apart from many fruitful theoretical advantages, this ASEP-to-KPZ mapping enables
a fast and simple way of modeling the KPZ dynamics. The latter is of wide interest since
it appears in various contexts (provided the symmetry of a nonequilibrium statistical system
under discussion allows for the effective (1+1)-dimensional description), including, to name
but a few, the models of crystal growth [10], molecular beam epitaxy [11], Burgers’ turbulence
[12, 13], polynuclear growth [14–18], ballistic deposition [19–22], etc.

It is therefore an appealing idea to seek for a similar simple discrete multi-particle system
whose long-range dynamics would be governed by a two-dimensional KPZ-type equation.
Lately, several models of the desired nature, i.e. ones which combine the discreteness with the
long-range KPZ-type dynamics, were suggested [23–28]. In this communication we propose
another model belonging to this class, which, in our opinion, combines the advantage of
physical transparency with the flexibility of tuning the internal parameters of the model to

1751-8113/11/012002+09$33.00 © 2011 IOP Publishing Ltd Printed in the UK & the USA 1

http://dx.doi.org/10.1088/1751-8113/44/1/012002
mailto:tamm@polly.phys.msu.ru
http://stacks.iop.org/JPhysA/44/012002


J. Phys. A: Math. Theor. 44 (2011) 012002 Fast Track Communication
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Figure 1. The zigzags on a cylinder for different tilt angles α = π/4 (a) and α = arctan(1/3) (b);
the examples of allowed and forbidden moves are shown. The system is periodic in the horizontal
direction, and the stationary flow is obtained for the periodic boundary condition in the vertical
direction.

catch the different desired regimes both in 1+1 and in 2+1 dimensions. This model, which we
call the ‘zigzag model’, has a simple geometrical formulation.

Take an infinite cylinder covered by a tilted square grid as shown in figures 1(a) and (b)
and consider a directed closed path (‘zigzag’) around a cylinder. Any such path consists of a
constant number of rises and descents, constituting ‘kinks’ (here and below we conventionally
define rises and descents with respect to a rightward step). The density of descents, ρ, is
defined by the tilt angle α—see figures 1(a) and (b) where this density equals ρ = 1/2 (for
tan α = 1) and ρ = 1/4 (for tan α = 1/3), respectively. Consider evolution of a system of
such nonintersecting zigzags. At each infinitesimal time step dt any elementary kink oriented
downward, can turn upward with probability p dt under the condition that such a move is not
blocked by the upper nearest-neighboring zigzag (i.e. all zigzags stay nonintersecting at all
times). By an appropriate rescaling of time, t, we set p ≡ 1. The examples of elementary
jumps which are allowed and those which are blocked are shown in figure 1.

For better understanding of the dynamics of the model, note that the evolution of a
separated zigzag (if, for the time being, we neglect its interaction with the other ones) can be
interpreted as a hopping dynamics in a standard one-dimensional totally asymmetric simple
exclusion process (TASEP) [2]—see figure 2 for the corresponding mapping, which is both
conventional and self-explanatory. Essentially, a descent (rise) in a zigzag is identified with a
particle (hole) in the corresponding TASEP. Therefore, the set of zigzags can be viewed as a
system of interacting TASEP layers.

The connection between zigzags and TASEP layers is shown in figure 2(a). Here, there
are two sorts of constraints on the movement of the particles in the layer B2. Indeed, for a
jump to be possible at some point of the A2 zigzag, two conditions should be simultaneously
fulfilled: (i) it should be a downward kink, and (ii) the movement should not be blocked by
the upper zigzag. The translation of the first condition into the TASEP language is convenient:
there should be a particle at a given position in B2 and a void immediately to the right of it.
In turn, the second rule (i.e. the one describing the interaction of the B1 and B2 layers) can be
formulated as follows: it is possible to label the particles in the layers B1 and B2 in a way such
that the kth particle in the layer B2 can never surpass the particle with the same label (i.e. the kth
one) in the upper layer B1, giving rise to an ‘interlaced TASEP’ picture shown in figure 2(b) 4.

4 Note that the described system of interlaced TASEPs bears many similarities with the one proposed by Borodin
and Ferrari in [25–27], with the exception that there is no ‘push-TASEP’ regime in our model.
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Figure 2. The interconnections between zigzag, interacting TASEP and tag diffusion
representations of the model. (a) Interaction of two zigzags and the two corresponding TASEP
layers; examples of the same allowed and forbidden moves are shown in both representations;
(b) interacting TASEP layers with examples of allowed moves; the bold dashed lines connect
the particles with the same number (see the explanation in the text); (c) the system of tagged
particles corresponding to the TASEP layers depicted in figure (b), with the same allowed moves
highlighted; (d) the result of the shift hi,j → hi,j + j .

To prove these jumping rules, consider the distance �y between the zigzags A1 and A2

(see figure 2(a)). At two adjacent spatial positions it satisfies

�y(x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

�y(x − 1) + 1 there is a particle at x − 1/2
on B2 and a void on B1

�y(x − 1) − 1 there is a void at x − 1/2
on B2 and a particle on B1

�y(x − 1) otherwise

(1)

At the same time, �y(x) � 1 at all positions. Therefore, for each particle on the upper line
there is a ‘partner’ particle on the lower line that cannot surpass it, and this ‘partnership’ is
preserved by the elementary moves. Indeed, if there is a particle on the upper line A1 in the
position x − 1/2 (particle positions are shifted by half-step as compared to the positions of the
kinks) and the zigzag-to-zigzag distance at x is �y(x), then each particle on A2 jumping from
x − 1/2 to x + 1/2 will decrease �y by 1, and, therefore, up to (�y − 1) particles can pass
this point without being affected, while the particle number �y, which is the desired ‘partner’
particle, will get stacked at x − 1/2. Moreover, assume now that the upper particle hops from

3



J. Phys. A: Math. Theor. 44 (2011) 012002 Fast Track Communication

x − 1/2 to x + 1/2. For this move to take place, the position x + 1/2 should be a void before
it thus, (compared to equation (1))

�y(x + 1) =
⎧⎨
⎩

�y(x) + 1 there is a particle at x + 1/2
on B2

�y(x) otherwise
(2)

and �y(x + 1) does not change as a result of the move. In both cases of (2) the ‘partner’
particle after the move is still the same: either the distance and the order of particles do not
change, or the distance increases but the (�y + 1)th particle as viewed from the new position
is the same as the �yth particle from the old position.

In the case of a finite cylinder with periodic boundary conditions the ‘partner’ particle can,
in principle, lag behind by a whole lap. In this case, one should ensure that the two particles
do not interact even if formally they are at the same place, so one should keep track of the
‘real’ distances between the particles (i.e. those which correspond to the distances between the
kinks on the original cylinder), not the ‘apparent’ modulo N distances (compare with [29]).

There is now evidence of some spatial symmetry in the model: for each given particle
there are exactly two other particles, one to the right and one, with the same number, ‘on top’
of it (see the dashed lines connecting the particles of the same number in figure 2(b)), which
can block its movement via excluded-volume interaction. To better exploit this symmetry, it
is convenient to reformulate the model, following the logic of the so-called tagged particle
diffusion introduced in [3] in order to show that on a coarse-grained level the ASEP dynamics
is subject to the one-dimensional KPZ equation.

Consider a set of m TASEP layers (zigzags) of length N with n particles within each layer.
Note that instead of enumerating the sites of TASEP layers and marking which particular
sites are filled with particles, one can store the very same information in a different way
by enumerating the particles with two indices i ∈ [1, n], j ∈ [1,m], and ascribing to each
particle a ‘height’ hi,j equal to its position on the corresponding layer (as measured from
some arbitrary chosen ‘first site’). It is clear now that locally the values in the hi,j matrix
are increasing in the i direction and non-decreasing in the j direction. To make the model
completely symmetric make the transformation (compare [30]) hi,j → hi,j + j which (see
figures 2(c) and (d)) ensures that hi,j is now an increasing function in both directions, i and j .
Under this transformation the dynamic rules become totally symmetric:

hi,j →
⎧⎨
⎩hi,j + 1 with probability dt, if

{
hi+1,j > hi,j + 1
hi,j+1 > hi,j + 1

}
hi,j otherwise

. (3)

One can interpret these rules as the dynamics of a heap growing over a two-dimensional
substrate, with an additional constraint of heap gradient being not less than 1 in each of the
transverse directions.

To obtain insights about the large scale dynamics it is useful to consider a coarse-grained
hydrodynamic description of the model [8]. To describe the model at a coarse-grained level we
will henceforth use (x, y) as the spatial coordinates instead of (i, j) in the lattice model. The
coarse-grained dynamics can be described in terms of a local ‘smooth’ velocity field u(x, y, t)

which is, in fact, nothing but the average (over spacetime element dx dy dt) rate of successful
hops hi,j → hi,j + 1, i.e. the average probability to find simultaneously (hi+1,j − hi,j ) > 1
and (hi,j+1 − hi,j ) > 1. This value obviously depends on the average slope (or equivalently
on the local densities in both directions in the zigzag model) of the surface in both directions.
Similar to the one-dimensional case [4, 8] we assume that the velocity field u(x, y, t) depends
on the spacetime coordinates only through the local slopes, i.e.

u(x, y, t) ≡ u(ρx(x, y, t), ρy(x, y, t)) (4)
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where ρ−1
x (x, y, t) = ∂h(x,y,t)

∂x
and ρ−1

y (x, y, t) = ∂h(x,y,t)

∂y
. Note that the value ρx introduced

here has a meaning of particle density in the corresponding TASEP layer.
In order to get the continuum equation for the fluctuating interface, we proceed as was

prescribed in [31, 32] for the (1+1)D case. Namely, we suppose that the slopes ρx and ρy

are weakly fluctuating around some average values ρx and ρy , which are determined by the
boundary conditions. Now coarse grain the particle labels so that the discrete tag labels
i, j become the continuous tag variables x, y, and divide x and y by corresponding particle
densities. Clearly the mean height at (x, y) is given by h(x, y) = x

ρx
+ y

ρy
around which the

height field h(x, y, t) smoothly fluctuates. We denote this fluctuation by d(x, y, t) which also
denotes the displacement d(x, y, t) of a particle located at (x, y) from its average position at
t = 0. Thus

d(x, y, t) = h(x, y, t) − x

ρx

− y

ρy

. (5)

The goal now is to write a stochastic hydrodynamic equation of motion for this height
fluctuation d(x, y, t). Clearly, the rate of growth ∂td(x, y, t) will have two components:
(i) a first part that arises due to local density fluctuations and local noise in the dynamics and is
completely independent of the local drift (this term will be present even, e.g., in the symmetric
exclusion process) and (ii) a second deterministic part that is induced by the local asymmetric
drift present in the microscopic model which is simply u(x, y, t) in the continuum description.
In the simplest description one assumes that the first part is simply diffusive in the presence of
a white noise (in the height description this gives rise to the Edwards–Wilkinson model that
corresponds to the continuum description of the symmetric exclusion process). Thus within
this description,

∂d

∂t
= D�d + η + u(ρx, ρy) (6)

where we have assumed isotropic diffusion with the diffusion constant D and η(x, y, t) is the
white noise

〈η(x, y, t)〉 = 0,
〈
η(x, y, t)η(x ′, y ′, t ′)

〉 = δx,x ′δy,y ′δt,t ′ . (7)

Note that even if the diffusion is anisotropic with diffusion constants Di (i = 1, 2), one can
always rescale x → x

√
D/D1 and y → y

√
D/D2 to make the diffusion term isotropic. The

white noise is chosen for simplicity and is enough (and minimal) to lead to an equilibrium
Gaussian distribution for the height fluctuations Peq[d] ∝ exp[− ∫

dx dy(∇d)2] in the absence
of the drift field u(ρx, ρy).

The next step is to express the drift field u(ρx, ρy) in terms of the displacement field
d(x, y, t) to obtain a closed equation. To proceed, we note that the local values of ρx,y and d
are connected via

1

ρx(x, y, t)
= 1

ρx

+
∂d(x, y, t)

∂x
; 1

ρy(x, y, t)
= 1

ρx

+
∂d(x, y, t)

∂y
. (8)

Assuming now
∣∣ ∂d
∂x

∣∣ � 1 and
∣∣∣ ∂d
∂y

∣∣∣ � 1, one can expand both ρx,y and u(ρx, ρy) as power

series in the derivatives of d, obtaining up to the second order:

ρx(x, y, t) = ρx

(
1 − ρx

∂d

∂x
+

(
ρx

)2
(

∂d

∂x

)2

+ · · ·
)

ρy(x, y, t) = ρy

(
1 − ρy

∂d

∂y
+

(
ρy

)2
(

∂d

∂y

)2

+ · · ·
) (9)
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which when substituted into (8) gives

u(ρx, ρy) = u(ρx, ρy) − ρ2
xux(ρx, ρy)

∂d

∂x
− ρ2

yuy(ρx, ρy)
∂d

∂y

+
(
ρ3

xux(ρx, ρy) +
1

2
ρ4

xuxx(ρx, ρy)
) (

∂d

∂x

)2

+
(
ρ3

yuy(ρx, ρy) +
1

2
ρ4

yuyy(ρx, ρy)
) (

∂d

∂y

)2

+ ρ2
xρ

2
yuxy(ρx, ρy)

∂d

∂x

∂d

∂y
+ · · ·

(10)

where for brevity we introduced the notation ux, uy, etc for the partial derivatives ux =
∂u
∂ρx

, uy = ∂u
∂ρy

, . . ..
This then allows us to finally write down a time-dependent differential equation for d

which belongs to the two-dimensional anisotropic KPZ class:

∂d

∂t
= D�d + η + u(ρx, ρy) = D�d + η + u(ρx, ρy)

−
∑

α=x,y

aα

∂d

∂α
+

∑
α=x,y

∑
β=x,y

bαβ

∂d

∂α

∂d

∂β
, (11)

where aα, bαβ for {α, β} = x, y are

aα = ρ2
αuα(ρx, ρy),

bαα = ρ3
αuα(ρx, ρy) + 1

2ρ4
αuαα(ρx, ρy),

bxy = ρ2
xρ

2
yuxy(ρx, ρy).

(12)

The behavior of the system is controlled by the usual flow-density dependence u(ρx, ρy),
which is central in all models of traffic (see, for example, [33]) and is usually referred to as ‘the
fundamental diagram’. Indeed, the flow of the particles in the interlaced TASEP formulation
of the zigzag model is equal to I (ρx, ρy) = ρxu(ρx, ρy). Recall that in the 1D case the
function u(ρ) = I (ρ)/ρ is just u = 1−ρ and it can be obtained by the mean-field arguments.
In the absence of interaction between layers one would have expected the same dependence
in our model:

u(ρx, ρy) = 1 − ρx. (13)

In the presence of interaction the corresponding 2D mean-field result would be

u(ρx, ρy) = (1 − ρx)(1 − ρy) (14)

where the symmetry of the model is taken into account: a particle can hop if there is a void
both in front (with probability 1 − ρx) and on top (with probability 1 − ρy) of it and the
horizontal and vertical jumps are supposed to be independent. However, contrary to the 1D
case, this result is not exact. Indeed, the connectivity of the surface dictates that the local
increments (hi+1,j −hi,j) and (hi,j+1 −hi,j ) are positively correlated and cannot be considered
as independent.

The exact analytical evaluation of the velocity u(ρx, ρy) up to now is beyond our
reach. We have made numerical simulations of u(ρx, ρy), the results being presented
in figure 3. The simulations were performed for the systems of size N = 32 in both
directions with periodic boundary conditions ensuring that the average densities take the

6



J. Phys. A: Math. Theor. 44 (2011) 012002 Fast Track Communication

0,2 0,4 0,6
0,8

1,0

0,0

0,2

0,4

0,6

0,8

1,0

0,2

0,4
0,6

0,8
1,0

u

y

x

(a) (c)

0,0 0,2 0,4 0,6 0,8 1,0
0,0

0,2

0,4

0,6

0,8

1,0

numerical data
u( ) [Eq.(14)]
2D mean field
1D mean field

u

0,2
0,4

0,6
0,8

1,0

-0,04

-0,02

0,00

0,02

0,04

0,2

0,4

0,6
0,8
1,0

di
sc

re
pa

nc
y

y

x

(b)

max

Figure 3. Comparison of the theoretical and numerical results for u(ρx, ρy). (a) u(ρx, ρy)

dependence as measured by direct numerical simulations (see the main text for the details about
the simulations); (b) the discrepancy between the numerical result for u and the one conjectured in
equation (16); (c) the u(ρ) behavior in the ρ = ρx = ρy plane: the points correspond to numerical
results, while the dashed line is the naive mean-field guess u = (1 − ρ)2 (compare equation (14))
and the bold line is the conjectured dependence u = (1 − ρ)(1 − ρ/2) (compare equation (16)).

(This figure is in colour only in the electronic version)

values ρx = ρy = 0, 1
31 , 2

31 , . . . , 1.5 The results were averaged over 9 × 106 Monte Carlo
steps. To make the comparison with the mean field more visually compelling, we plot in
figure 3(c) separately the numerical data for ρx = ρy = ρ together with the mean-field results
(13) and (14). As expected, the first of them overestimates the flow, while the second one
underestimates it. In fact, the numerical data fits perfectly the form

u(ρ) = (1 − ρ)(1 − ρ/2) (15)

and the consideration of limiting cases ρ → 0 and ρ → 1 suggests that this result may
be exact. In particular by developing the perturbation theory at high densities, we are able
prove that u(ρ) → (1 − ρ)/2 as ρ → 1; the details of these computations will be published
separately [34].

The simplest generalization of equation (15) onto the case of ρx �= ρy which respects the
boundary conditions u(0, 0) = 1, u(1, ξ) = u(ξ, 1) = 0 for any ξ ∈ [0, 1] reads

u(ρx, ρy) = (1 − ρx)(1 − ρy)

(
1 +

2ρxρy

(ρx + ρy)(2 − ρx − ρy)

)
. (16)

In figure 3(b) we have plotted the discrepancy �u(ρx, ρy) = un(ρx, ρy) − u(ρx, ρy) between
numerical, un(ρx, ρy) and conjectured, u(ρx, ρy), (see (16)) functions. One sees that u(ρx, ρy)

is in very good agreement with the results of numerical simulations.
The conjectured function u(ρx, ρy) allows us to evaluate the coefficients in (12) for any ρx

and ρy and to calculate the eigenvalues of the coefficient matrix B{bαβ} in front of the nonlinear
term in equation (11). We thus show (see figure 4) that the domain [0 < ρx < 1, 0 < ρy < 1]
can be separated into two regions: (i) a region where one of the eigenvalues of the matrix B
dominates (|λ1|  |λ2|) signaling a quasi-one-dimensional behavior, and (ii) a region where
|λ1| ∼ |λ2| corresponding to the truly two-dimensional KPZ dynamics. In the latter region
both eigenvalues are negative, and thus the matrix B is positive definite.

5 In terms of the original zigzag model our choice of boundary conditions corresponds to consideration of the system
on a torus so that each zigzag consists of N steps, and there is a room for at most N zigzags on the torus. The densities
in the system of m zigzags each of those has n descents are defined by ρy = (m− 1)/(N − 1); ρx = (n− 1)/(N − 1)

(i.e. ρx and ρy are the average densities in the vicinity of a particle excluding the influence of the particle itself,
compare the exact solution for finite TASEP ring).
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Figure 4. Density plot of the ratio λ1/λ2 of the eigenvalues of the matrix B. In the region
det B < 0 the eigenvalues have opposite signs. Outside the dashed area the system can be regarded
as effectively one-dimensional since λ1  λ2.

Summing up, we have presented a novel model of a statistical driven system in 2+1
dimensions which turned out to be a direct generalization of the conventional one-dimensional
TASEP model. In the hydrodynamic limit we derived the differential equation for the particle
displacement in this model, and we have made a conjecture concerning the flow-on-density
dependence of the model (the so-called fundamental diagram). Clearly, the model suggested
here deserves further investigations in various directions. In particular, a detailed investigation
of the limiting cases ρx = ρy → 0 and ρx = ρy → 1 can give valuable understanding of
the flow-density dependence; the study of the displacement fluctuations in different regimes
(compared to [3]) should be very fruitful, and the problem of proving conjecture (16) or at
least (15) sounds quite challenging. Some progress in this direction will be reported in a
forthcoming longer paper [34].
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