BEGIN:VCALENDAR
VERSION:2.0
PRODID:-//wp-events-plugin.com//6.4.7.2//EN
TZID:Europe/Paris
X-WR-TIMEZONE:Europe/Paris
BEGIN:VEVENT
UID:0-761@lptms.universite-paris-saclay.fr
DTSTART;TZID=Europe/Paris:20210202T110000
DTEND;TZID=Europe/Paris:20210202T120000
DTSTAMP:20210105T221421Z
URL:http://www.lptms.universite-paris-saclay.fr/seminars/seminaire-du-lptm
s-phlam-lille/
SUMMARY:Séminaire du LPTMS : Pierre Suret (PhLAM - Lille) - LPTMS (100% on
line seminar) - 2 Fév 21 11:00
DESCRIPTION:Integrable turbulence and soliton gas: experiments and theoreti
cal approaches\nPierre Suret (PhLAM - Lille)\n\nOnline seminar --- Zoom Me
eting ID: 996 1840 3246 -- Passcode: Ask L. Mazza or D. Petrov --\n\n\nExa
ctly integrable partial differential equations (PDEs) such as the Korteweg
-de-Vries (KdV) or the one-dimensional nonlinear Schrödinger equation (1D
NLSE) can be studied in the framework of the Inverse Scattering Transform
(IST). Integrable PDEs exhibit an infinite hierarchy of invariants that pr
event the development of "standard" Wave Turbulence and energy cascade. De
spite the existence of the IST technique\, there is no general theory desc
ribing of the propagation of random waves in integrable systems such as 1D
NLSE. For this reason\, Integrable Turbulence\, which deals with random fi
elds\, has been recently introduced as a completely "new chapter of turbul
ence theory" by V.E. Zakharov\, one of the creators both of the wave turbu
lence theory and of the IST [1].\n\nSoliton gas (SG) is one example of int
egrable turbulence. The concept of SG as a large ensemble of solitons rand
omly distributed on an infinite line and elastically interacting with each
other originates from the work of Zakharov [2]\, who introduced the kinet
ic equation for a nonequilibrium diluted gas of weakly interacting soliton
s of the KdV equation. Zakharov’s kinetic equation has been generalized
to the case of a dense SG in Ref. [3].\n\nOptical fibers and 1D water tank
s are very favorable experimental platforms for the investigation of integ
rable turbulence and soliton gas (described by the focusing 1DNLSE). In th
is talk\, I will present our recent experimental results obtained both in
optical fibers and water tanks [4-6]. In the second part of my talk\, by u
sing the famous example of the modulation instability\, I will show that S
G is a promising model to describe the statistical properties of integrabl
e turbulence. The spontaneous modulation instability (MI) also named “no
ise-induced MI” arises when a plane wave is perturbed by noise in 1DNLSE
. We will show that the long-term evolution of MI can be described by a ca
refully designed SG [7].\n\n[1] V. E. Zakharov\, Stud. Appl. Math. 122\, 2
19 (2009)\n[2] V. E. Zakharov\, Sov. Phys. JETP 33\, 538 (1971)\n[3] G. El
\, Phys. Lett. A 311\, 374 (2003)\n[4] A. Tikan\, S. Bielawski\, C. Szwaj\
, S. Randoux\, and P. Suret\, Nature Photonics 12\, 228 (2018)\n[5] A. E.
Kraych\, D. Agafontsev\, S. Randoux\, and P. Suret\, Phys. Rev. Lett. 123\
, 093902 (2019).\n[6] P Suret et al. Phys. Rev. Lett. 125\, 264101 (2020)\
n[7] A Gelash\, D Agafontsev\, V Zakharov\, G El\, S Randoux\, P Suret\, P
hys. Rev. Lett 123\, 234102 (2019)\n\n\n\n
CATEGORIES:seminars
LOCATION:LPTMS (100% online seminar)\, LPTMS - Bâtiment Pascal n° 530 rue
André Rivière - Université Paris-Saclay\, Orsay\, 91405\, France
X-APPLE-STRUCTURED-LOCATION;VALUE=URI;X-ADDRESS=LPTMS - Bâtiment Pascal n
° 530 rue André Rivière - Université Paris-Saclay\, Orsay\, 91405\, Fr
ance;X-APPLE-RADIUS=100;X-TITLE=LPTMS (100% online seminar):geo:0,0
END:VEVENT
BEGIN:VTIMEZONE
TZID:Europe/Paris
X-LIC-LOCATION:Europe/Paris
BEGIN:STANDARD
DTSTART:20201025T020000
TZOFFSETFROM:+0200
TZOFFSETTO:+0100
TZNAME:CET
END:STANDARD
END:VTIMEZONE
END:VCALENDAR