Mathematical tools: Difference between revisions
Jump to navigation
Jump to search
Wiki-cours (talk | contribs) No edit summary |
Wiki-cours (talk | contribs) No edit summary |
||
Line 6: | Line 6: | ||
'''2018''': Approximate Schedule for the 13 courses: | '''2018''': Approximate Schedule for the 13 courses: | ||
* 06/09 Functionals derivatives I -- [http://lptms.u-psud.fr/membres/groux/enseignements/Math/TDvariation.pdf tutorial] | * 06/09 Functionals derivatives I <!-- -- [http://lptms.u-psud.fr/membres/groux/enseignements/Math/TDvariation.pdf tutorial] --> | ||
* 13/09 Functionals derivatives II | * 13/09 Functionals derivatives II | ||
* 20/09 Symmetries and Lie algebra | * 20/09 Symmetries and Lie algebra | ||
* 27/09 Complex analysis + '''30min test on 1.2.3''' -- [http://lptms.u-psud.fr/membres/groux/enseignements/Math/TDcomplex.pdf tutorial] | * 27/09 Complex analysis + '''30min test on 1.2.3''' <!-- -- [http://lptms.u-psud.fr/membres/groux/enseignements/Math/TDcomplex.pdf tutorial]--> | ||
* 04/10 Fourier transform -- [http://lptms.u-psud.fr/membres/groux/enseignements/Math/TDFourier.pdf tutorial] | * 04/10 Fourier transform <!-- -- [http://lptms.u-psud.fr/membres/groux/enseignements/Math/TDFourier.pdf tutorial]--> | ||
* 11/10 Principal value -- [http://lptms.u-psud.fr/membres/groux/enseignements/Math/TDkramers.pdf tutorial] | * 11/10 Principal value <!-- -- [http://lptms.u-psud.fr/membres/groux/enseignements/Math/TDkramers.pdf tutorial]--> | ||
* 18/10 Kramers-Krönig relations | * 18/10 Kramers-Krönig relations | ||
* 25/10 Gaussian integrals and Wick's theorem + '''60min test on 4.5.6.7''' | * 25/10 Gaussian integrals and Wick's theorem + '''60min test on 4.5.6.7''' | ||
* 08/11 Saddle points methods -- [http://lptms.u-psud.fr/membres/groux/enseignements/Math/TDsteepest.pdf tutorial] | * 08/11 Saddle points methods <!-- -- [http://lptms.u-psud.fr/membres/groux/enseignements/Math/TDsteepest.pdf tutorial] --> | ||
* 15/11 Linear algebra -- [http://lptms.u-psud.fr/membres/groux/enseignements/Math/TDlinearAlgebra.pdf tutorial] | * 15/11 Linear algebra <!-- -- [http://lptms.u-psud.fr/membres/groux/enseignements/Math/TDlinearAlgebra.pdf tutorial]--> | ||
* 22/11 Green's function: static case -- [http://lptms.u-psud.fr/membres/groux/enseignements/Math/TDGreenFunction.pdf tutorial] | * 22/11 Green's function: static case <!-- -- [http://lptms.u-psud.fr/membres/groux/enseignements/Math/TDGreenFunction.pdf tutorial]--> | ||
* 29/11 Green's function: causality and propagation | * 29/11 Green's function: causality and propagation | ||
* 06/12 Orthogonal polynomials and Special functions | * 06/12 Orthogonal polynomials and Special functions |
Revision as of 15:17, 4 September 2018

Bessel function for the drums
Lecturer : Guillame Roux
Syllabus: Course built on miscellaneous small chapters, based on examples. The goal is to recall and/or introduce useful mathematical tools with hands on.
2018: Approximate Schedule for the 13 courses:
- 06/09 Functionals derivatives I
- 13/09 Functionals derivatives II
- 20/09 Symmetries and Lie algebra
- 27/09 Complex analysis + 30min test on 1.2.3
- 04/10 Fourier transform
- 11/10 Principal value
- 18/10 Kramers-Krönig relations
- 25/10 Gaussian integrals and Wick's theorem + 60min test on 4.5.6.7
- 08/11 Saddle points methods
- 15/11 Linear algebra
- 22/11 Green's function: static case
- 29/11 Green's function: causality and propagation
- 06/12 Orthogonal polynomials and Special functions
- ??/01 Final Exam (3h) on everything
incomplete bibliography :
- Mathematical Methods for Physicists -- T. L. Chow (free pdf).
- MATHEMATICAL METHODS FOR PHYSICISTS, George B. Arfken & H. J. Weber
- Mathematics for Physics -- M. Stone & P. Goldbart (free pdf)
- Mathematical physics: a modern introduction to its foundations -- S. Hassani
- Mathematical Methods: For Students of Physics and Related Fields -- S. Hassani
- Physics and Mathematical Tools: Methods and Examples -- A. Alastuey, M. Clusel, M. Magro, P. Pujol.
- Group Theory in a Nutshell for Physicists -- Anthony Zee. (if you want to learn group theory)
Evaluation (3 ECTS)
- continuous assessment
- final exam : 3 hours, written exam