Programmation et données numériques M1 Physique Appliquée: Difference between revisions

From Wiki Cours
Jump to navigation Jump to search
 
(One intermediate revision by the same user not shown)
Line 158: Line 158:
* optimisation, fits non-linéaire
* optimisation, fits non-linéaire
* notes de cours : [https://owncloud.ias.u-psud.fr/index.php/s/tE6kRzYtSfzEasJ Cours 3 - 5]  
* notes de cours : [https://owncloud.ias.u-psud.fr/index.php/s/tE6kRzYtSfzEasJ Cours 3 - 5]  
* Exemple de test Monte-Carlo : [https://owncloud.ias.u-psud.fr/index.php/s/xpJWbrCfCqLy6om Notebook]




Line 166: Line 167:




<!-- ** quelques fichiers pour la correction : [http://lptms.u-psud.fr/membres/groux/enseignements/M1/Statistique.py Statistique.py] - [http://lptms.u-psud.fr/membres/groux/enseignements/M1/BarreErreur.py BarreErreur.py] - [http://lptms.u-psud.fr/membres/groux/enseignements/M1/Propagation.py Propagation.py] - [http://lptms.u-psud.fr/membres/groux/enseignements/M1/Correlations.py Correlations.py] - [http://lptms.u-psud.fr/membres/groux/enseignements/M1/FitLineaire.py FitLinaire.py] - [http://lptms.u-psud.fr/membres/groux/enseignements/M1/FitExponentiel.py FitExponentiel.py] - [http://lptms.u-psud.fr/membres/groux/enseignements/M1/JohnsonExp.py JohnsonExp.py] - [http://lptms.u-psud.fr/membres/groux/enseignements/M1/PolyFit.py PolyFit.py] - [http://lptms.u-psud.fr/membres/groux/enseignements/M1/IsingAnalytic.py IsingAnalytic.py] - [http://lptms.u-psud.fr/membres/groux/enseignements/M1/FitExpoNonLin.py FitExpoNonLin.py] - [http://lptms.u-psud.fr/membres/groux/enseignements/M1/RaiesGaussiennes.py RaiesGaussiennes.py]
** quelques fichiers pour la correction : [http://lptms.u-psud.fr/membres/groux/enseignements/M1/Statistique.py Statistique.py] - [http://lptms.u-psud.fr/membres/groux/enseignements/M1/BarreErreur.py BarreErreur.py] - [http://lptms.u-psud.fr/membres/groux/enseignements/M1/Propagation.py Propagation.py] - [http://lptms.u-psud.fr/membres/groux/enseignements/M1/Correlations.py Correlations.py] - [http://lptms.u-psud.fr/membres/groux/enseignements/M1/FitLineaire.py FitLinaire.py] - [http://lptms.u-psud.fr/membres/groux/enseignements/M1/FitExponentiel.py FitExponentiel.py] - [http://lptms.u-psud.fr/membres/groux/enseignements/M1/JohnsonExp.py JohnsonExp.py] - [http://lptms.u-psud.fr/membres/groux/enseignements/M1/PolyFit.py PolyFit.py] - [http://lptms.u-psud.fr/membres/groux/enseignements/M1/IsingAnalytic.py IsingAnalytic.py] - [http://lptms.u-psud.fr/membres/groux/enseignements/M1/FitExpoNonLin.py FitExpoNonLin.py] - [http://lptms.u-psud.fr/membres/groux/enseignements/M1/RaiesGaussiennes.py RaiesGaussiennes.py]


-->


<!--
<!--

Latest revision as of 10:22, 14 January 2025

Équipe pédagogique

  • Cours : João Marques
  • TDs : François Orieux, Adrien Gady et Paul Raux

Modalités de contrôle

  • MCC :
  • contrôles continus : sur machine à la fin des séances de TD (durée 1h), CC1 le 10/10/2024 et CC2 le 14/11/2024.
  • informations sur la validation France-IOI



Préambule

Contenu approximatif du cours

Langages de programmation, algorithmes et numérisation de l'information (4h)

L'image pour le TD sur les images
  • architecture des ordinateurs, numérisation de l'information
  • langages de programmation
  • stockage de l'information (fichiers), compression, cryptage
  • structure de données: vecteurs, listes, dictionnaires
  • représentation numérique des signaux: entiers, réels, images, couleurs, caractères ASCII
  • stockage de l'information (fichiers), compression, encryptage
  • apprentissage du langage Python en Travaux dirigés (20h):



Lectures complémentaires, principalement wikipedia:

Incertitudes, ajustement des données et modélisation (6h)

  • incertitudes expérimentales, barre d'erreur statistique, corrélations
  • ajustement des données, régression linéaire
  • optimisation, fits non-linéaire
  • notes de cours : Cours 3 - 5
  • Exemple de test Monte-Carlo : Notebook




Modalités de l'examen

  • date : Début 15 janvier 2025 à 8h30, sur machine sur session examen avec des questions de cours à rendre sur copie et des scripts à compléter. Documents non-autorisés.
  • durée : 3h
  • programme : les 3 derniers cours et TDs
  • examen sur machine sur une session "examen" sous Linux
  • pas d'accès internet, pas d'accès aux comptes personnels, pas de clé usb ni calculatrice autorisées
  • un sujet papier sera distribué, le sujet contiendra des questions de cours et des exercices similaires aux TDs
  • utilisation de spyder conseillée pour écrire les scripts Python, les scripts préremplis seront disponibles dans le dossier "Mes documents"
  • pensez à venir en avance pour ne pas perdre de temps avec le démarrage des sessions

Annales