Mathematical tools: Difference between revisions
Jump to navigation
Jump to search
Wiki-cours (talk | contribs) No edit summary |
Wiki-cours (talk | contribs) mNo edit summary |
||
Line 8: | Line 8: | ||
'''2020-2021''': Approximate Schedule for the 13 courses: | '''2020-2021''': Approximate Schedule for the 13 courses: | ||
* 10/09 | * 10/09 Functionals derivatives I -- [http://lptms.u-psud.fr/membres/groux/enseignements/Math/TDvariation.pdf tutorial] <!-- [http://lptms.u-psud.fr/membres/groux/enseignements/Math/scanTDvariation_all.pdf correction] --> | ||
* 17/09 | * 17/09 Functionals derivatives II | ||
* 24/09 Continuous groups and Lie algebra -- [http://lptms.u-psud.fr/membres/groux/enseignements/Math/TDgroup.pdf notes & tutorial] <!-- [http://lptms.u-psud.fr/membres/groux/enseignements/Math/groupMorphism.pdf last page] -- [http://lptms.u-psud.fr/membres/groux/enseignements/Math/scanTDgroup.pdf correction] --> | * 24/09 Continuous groups and Lie algebra -- [http://lptms.u-psud.fr/membres/groux/enseignements/Math/TDgroup.pdf notes & tutorial] <!-- [http://lptms.u-psud.fr/membres/groux/enseignements/Math/groupMorphism.pdf last page] -- [http://lptms.u-psud.fr/membres/groux/enseignements/Math/scanTDgroup.pdf correction] --> | ||
* 01/10 Complex analysis -- [http://lptms.u-psud.fr/membres/groux/enseignements/Math/TDcomplex.pdf notes & tutorial] <!-- [http://lptms.u-psud.fr/membres/groux/enseignements/Math/scanTDcomplexAnalysis.pdf correction] --> | * 01/10 Complex analysis -- [http://lptms.u-psud.fr/membres/groux/enseignements/Math/TDcomplex.pdf notes & tutorial] <!-- [http://lptms.u-psud.fr/membres/groux/enseignements/Math/scanTDcomplexAnalysis.pdf correction] --> |
Revision as of 10:44, 31 August 2021

Bessel function for the drums
Master : an option of the Master 2 Physics of complex system
Lecturer : Guillame Roux
Syllabus: Course built on miscellaneous small chapters, based on examples. The goal is to recall and/or introduce useful mathematical tools with hands on.
2020-2021: Approximate Schedule for the 13 courses:
- 10/09 Functionals derivatives I -- tutorial
- 17/09 Functionals derivatives II
- 24/09 Continuous groups and Lie algebra -- notes & tutorial
- 01/10 Complex analysis -- notes & tutorial
- 08/10 Fourier transform -- notes & tutorial
- 15/10 Principal value, Kramers-Krönig relations -- tutorial
- 22/10 Gaussian integrals and Wick's theorem notes & tutorial -- tutorial
- 05/11 Saddle points methods
- 12/11 End of asymptotic expansions
- 26/11 Linear algebra -- tutorial
- 03/12 Green's function: static case -- tutorial
- 10/12 Green's function: causality and propagation
- 17/12 Orthogonal polynomials and Special functions -- notes & tutorial
- 20/01 Final Exam (3h) 9:00-12:00, on everything
incomplete bibliography :
- Mathematical Methods for Physicists -- T. L. Chow (free pdf).
- MATHEMATICAL METHODS FOR PHYSICISTS, George B. Arfken & H. J. Weber
- Mathematics for Physics -- M. Stone & P. Goldbart (free pdf)
- Mathematical physics: a modern introduction to its foundations -- S. Hassani
- Mathematical Methods: For Students of Physics and Related Fields -- S. Hassani
- Physics and Mathematical Tools: Methods and Examples -- A. Alastuey, M. Clusel, M. Magro, P. Pujol.
- Group Theory in a Nutshell for Physicists -- Anthony Zee. (if you want to learn group theory)
Evaluation (3 ECTS)
- continuous assessment (1/3 of the final grade): each assessment is graded over 10, this makes a grade over 20. The average grade of the class is typically 14/20.
- final exam : 3 hours, written exam (2/3 of the final grade)
- you are allowed to bring your notes and the distributed documents at the tests and exam, but nothing else.
Previous test
- 2017--2018 : Test on complex calculus -- correction (some typos in modulus squares in the correction...)
- 2018--2019 : Test on complex calculus -- correction
- 2019--2020 : Test on complex calculus -- correction
Previous final exams
- 2017--2018 : subject -- correction
- 2018--2019 : subject -- correction
- 2019--2020 : subject -- correction
- 2020--2021 : subject