T-I-3draft

From Wiki Cours
Jump to navigation Jump to search

Radon transform and X-ray tomography

The goal of this homework is to introduce the Radon transform of a two-dimensional function. We will show that this transform is invertible and the inverse involves the Fourier transform in two dimensions. From a practical point of view, the Radon transform is the basis of X-ray tomography (as well as X-ray scanning), applied in the medical context in order to obtain cross-section images of different organs. The second part of the homework consists of a documentation work to be conducted in pairs: each pair of students should prepare a blackboard presentation of approximately five minutes on this part.

Radon transform

Preliminaries: parametrisation of a line in the plane

Figure 1: Parametrisation Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (t,\Phi)} of a line in the plane.)

Q1: In a two-dimensional space, how many parameters are needed in order to define a line? Provide some examples of equations that define a unique line in the plane.

Q2: In the context of Radon transform, we choose to define a line via the parameters Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Phi} , where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (t,\Phi)\in \mathbb{R}\times [0;2\pi[} , as displayed in Figure 1. Each angle Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Phi} is associated to a unique unit vector Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbf{u_t}} :

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbf{u_t} = \cos(\Phi) \mathbf{u_x}+ \sin(\Phi)\mathbf{u_y}.}

Show that for each given line there exist two possible pairs of values Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (t,\Phi)} .

Q3: We choose to orient the line positively along the unit vector Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbf{u_{\Phi}}} , defined by:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbf{u_{\Phi}} = -\sin(\Phi)\mathbf{u_x} + \cos(\Phi)\mathbf{u_y}.}

Show that for each pair Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (t,\Phi)} there exists one unique oriented line.

Q4: A natural pair of coordinates, associated to the family of lines obtained from a given Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Phi} , is the pair Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (t,s)\in \mathbb{R}^2} of coordinates of a point in the basis Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (\mathbf{u_t},\mathbf{u_\Phi})} related to the line that passes through that point. Provide the expression for Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (x,y)} as a function of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (t,s)} , as well as the expression for Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (t,s)} as a function of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (x,y)} . Deduce the relation between the surface elements Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \textrm{d}x \,\textrm{d}y} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \textrm{d}s \,\textrm{d}t} .

Definition of Radon transform

Definition: The Radon transform of a function Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f : \mathbb{R}^2\rightarrow \mathbb{R}} is the function Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \hat f : \mathbb{R}^2\rightarrow \mathbb{R}} defined by the following expression

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \hat f(t,\mathbf{u_t})=\int_{-\infty}^{+\infty}f(t\mathbf{u_t}+s\mathbf{u_\Phi})\,\mathrm{d}s. }

Use of the Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \delta-} distribution: The definition of Radon transform can be elegantly written by means of the Dirac-delta distribution. This formulation provides the advantage of generalising the definition of Radon transform to arbitrary dimension.

Q5: Using the relation

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(t\mathbf{u_t}+s\mathbf{u_\Phi})=\int_{-\infty}^{+\infty}f(t' \mathbf{u_{t'}}+s\mathbf{u_\Phi})\delta(t'-t)\mathrm{d}t', }

propose a definition of Radon transform in the form of a surface integral.

Q6: Propose a definition of the Radon transform of a function Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f:\mathbb{R}^n\rightarrow \mathbb{R}} (Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n\geq 2} ). Give a geometrical interpretation of the Radon transform in dimension Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n=3} .


From now on, we will always consider the Radon transform in the two-dimensional case Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n=2} .

Some examples

No calculation needed

Q7: In Figure 2, match each image with the corresponding Radon transform. Images represent functions Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f: \mathbb{R}^2\rightarrow \mathbb{R}^+} . Specify the meaning of the grey scales in the different figures. Draw the axes Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t,\Phi} on the Radon transforms, knowing that in the images in the direct space (plane Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x,y} ), the origin of axes Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x,y} is located at the center of the figure.

Some binary images...
Binary images.png
... and their Radon transform (in random order):
Figure 2: Qualitative illustration of the Radon transform.

Q8: Indicate (without doing any calculation) the profile of the Radon transform of a constant function on a quasi-point-like support. Similarly, indicate (without any calculation) the profile of the Radon transform of a constant function on a line, and on a line segment.

Hand calculations

Q9: Compute the Radon transform of a constant function on a disc of radius Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle R} , and null outside.

Q10: Compute the Radon transform of the function Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x,y)=a\,\exp\left(-\frac{x^2+y^2}{\sigma^2}\right)} .

Expression for radial functions

Q11: Show that in the case of radial function Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x,y)=F(r)=F(\sqrt{x^2+y^2})} the Radon transform can be written as a simple integral transform of the function Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle F(r)} .

Principles of X-ray tomography

What are the physical principles underlying X-ray tomography? In particular, we will specify which physical quantity is measured, and which quantity we try to reconstruct in form of an image. We will verify that we can express the measured quantities as a Radon transform of the parameter that we try to image. X-ray tomography is based on the inversion of the Radon transform, knowing how to deduce Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f} from a measure of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \hat f} . The following section addresses the principle at the basis of this inversion.

Inversion of the Radon transform

Back-projection formula

Q12: Explain why the following function

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle g(\mathbf{r})=\frac{1}{2\pi}\int_0^{2\pi}\hat f (\mathbf{r}\cdot \mathbf{u_t},\mathbf{u_t})\,\mathrm{d}\Phi, }

obtained via an angular mean of the Radon transform of a function Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f} , is likely to resemble to the function Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f} . This formula is called back-projection formula.

Some images...
Images radon.png
... and the back-projection of their Radon transform.
Figure 3: Illustration of the back-projection formula.

Figure 3 displays the application of the back-projection formula to the examples that we have previously considered (binary images), as well as to an example from medical imaging context. Does the back-projection formula allow to inverse the Radon transform? Explain.

Projection-slice theorem

Show that, for a given Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Phi} , the one-dimensional Fourier transform of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \hat f (t,\mathbf{u_t})} over the variable Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t} is equal to the two-dimensional transform of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(\mathbf{r})} :

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int_{-\infty}^{+\infty}\hat f (t,\mathbf{u_t})\, e^{-ikt}\,\mathrm{d}t =\int \int f(\mathbf{r})\, e^{-i(k\mathbf{u_t})\cdot \mathbf{r}}\mathrm{d}\mathbf{r} }

or