SOLUTIONS TD The replica method (1/2)

Problem 3.1: Corrections, p. spin vs rem

1 ENERGY CORRELATIONS

The random couplings are independent, and therefore the average is non-zero only whenever all the inclices are the same. Using the expression of the Variance:

Now, the constraint on the non-repeating indices can be released using that:

$$
\sum_{i x<\cdots<4} \simeq \frac{1}{p!} \sum_{i_{2}, \ldots, i, 4}
$$

and thus $\overline{E(\vec{\sigma}) E(\vec{z})}=N\left(\sum_{i=1}^{N} \frac{\sigma_{i i} z_{i 2}}{N}\right)-\left(\sum_{i=1}^{N} \frac{\sigma_{i i} \zeta_{i i}}{N}\right)=N[q(\vec{\sigma}, \vec{b})]^{p}$ where $q=q(\vec{r}, \vec{b})$ is the overlap.
One has $q \leq 1$ (Cawchy-Shwertz): therefore, when $p \rightarrow \infty$ $q^{p} \rightarrow 0$, and correlation vanish as in the REM.

Problem 3.2: The annealed Free-energy energy contribution

The averaged partition function is:
where $\int_{S N} d \vec{\sigma}$ is the integral on the surface of the sphere in dimension N.

By definition, $f_{a}=\lim _{N \rightarrow \infty} \frac{1}{N} \log \bar{Z}$.

Performing the Gaussian integral (e.g. by completing the square) we get:

$$
\bar{Z}=\int_{S_{s}} d \vec{\sigma} e^{\frac{p^{2} N}{2}\left(p l \left\lvert\, \sum_{k \ll \varphi} \frac{\sigma_{i x}^{2}}{N} \ldots \frac{\sigma_{i}^{2}}{N}\right.\right)}=e^{\frac{\beta^{2} N}{2}} \int_{S_{r}} d \vec{\sigma} .
$$

Using that $\sum_{i} G_{i}^{2} N$
[2] ENTROPY CONTRIBUTION

The Stirling formula implies $\left.\left(\frac{N}{2}\right)\right)^{N=1 n}=e^{-\frac{N}{2}}\left(\frac{N}{2}\right)^{N / 2}=e^{-\frac{N}{2} \cdot \frac{1}{2} \ln \left(\frac{N}{2}\right)}$ and thus $\begin{aligned} \int_{S_{N}} d \vec{\sigma} & =\left\lvert\, \frac{(\pi N)^{N / 2}}{\left(\frac{N}{2}\right)!} \simeq e^{\left.\frac{N}{2}\left[\log (\pi N)+1-\log \left(\frac{N}{2}\right)\right]+d N\right)}\right. \\ & =e^{\frac{N}{2} \log (2 \pi e)+o(N)}\end{aligned}$

$$
=e^{\frac{N}{2} \log (2 \pi e)+o(N)}
$$

Putting everything together, we find:

$$
\bar{Z}=\exp \left\{N\left(\frac{\beta^{2}}{2}+\frac{1}{2} \log (2 \pi e)\right)+o(N)\right\}
$$

and therefore

$$
f_{a}=-\frac{1}{\beta}\left[\frac{\beta^{2}}{2}+\frac{1}{2} \log (2 \pi e)\right]
$$

The clifference comes from the entropic contribution $\int_{s_{n}} d \overrightarrow{s_{1}}$, and it is clue to the fact that the phase space of the spherical model is different from that of the REM, where spins are discrete variables ± 1.

Problem 3.3: Quenched Free-Energy, Replicas

1) STEP 1: FROM QUENCHED RANDOMNESS TO INTERACTIONS

The n-th power of the partition function is:
when averaging over the couplings Ju...i, we use again the properties of independence and gnussianity and get:

The square at the exponent can be re-wiritten as:

$$
\sum_{a=1}^{n} \sum_{b=1}^{n}\left(\sigma_{i 2}^{a} \sigma_{i 1}^{b}\right) \ldots\left(\sigma_{i p}^{a} \sigma_{i p}^{b}\right)
$$

Therefore, using again that $\sum_{i<\ldots<i p} \simeq \frac{1}{p!} \sum_{i_{2},-i_{e}}$
we obtain:

In this expression, the quenched randomness has clisappeared, but the replicas are coupled!

Step 1: Start from expression with replicas decoupled, subject to some disorder. After averaging, end up with carked reprices (interacting theory), no disorder.
(2) STEP 2: EMERGING ORDER PARAMETERS

The final expression of $\overline{z^{n}}$ shows that the integrand depends on the variables σ_{i}^{a} only through global quantities, the scalar products between the $\vec{\sigma}$.

We can therefore identify a set of functions, the overlaps between the replicas:

$$
q^{a b}=q\left(\vec{\sigma}^{a}, \vec{\sigma}^{b}\right)=\sum_{i=1}^{N} \frac{\sigma_{i}^{a} \sigma_{i}^{b}}{N},
$$

that are ORDER PARAMETERS of the theory, file the magnetization $m=\frac{1}{N} \sum_{i=1}^{n} G_{i}$ in the mean-field Ising model. In particular, in $(*)$ we can replace the integral over all possible configurations of the $\vec{\sigma}^{a}$ with an integral over all possible values of the overlaps, using:

$$
\int \prod_{a<b} \prod_{\substack{\text { integration variables, numbers }}} q_{a} \delta\left(q\left(\vec{\sigma}^{-a}, \vec{\sigma}^{b}\right)-q_{a b}\right)=1
$$

Plugging this in (*) we obtain:

$$
\begin{aligned}
& \left(\prod_{a=1}^{n} \int_{S_{N}} d \vec{\sigma}^{a}\right) e^{\frac{\beta^{2} N}{2} \sum_{a, b-1}^{n}\left(\frac{\vec{\sigma} \cdot \overrightarrow{\vec{b}}^{b}}{N}\right)^{p}} \\
& =\left(\prod_{a=1}^{n} \int_{S_{N}} d \vec{\sigma}^{a}\right)\left(\int_{\substack{\text { exchange }}}^{\prod_{\substack{a<b}} d q_{a b} \delta\left(q\left(\sigma_{\vec{\sigma}}^{a}, \vec{\sigma}^{b}\right)-q_{a b}\right)} e^{\frac{\beta^{2}}{2} N \sum_{a, z=1}^{n}\left(\frac{\vec{\sigma} \cdot \vec{\sigma}^{b}}{N}\right)^{p}}\right. \\
& =\int \prod_{a<b} d q_{a b}\left[\left(\prod_{a=1}^{n} \int_{S^{N}} d \vec{\sigma}^{a}\right) \prod_{a<b} \delta\left(q\left(\vec{\sigma}^{a}, \vec{\sigma}^{b}\right)-q_{a b}\right)\right] e^{\frac{B^{2}}{2} N \sum_{a, b=1}^{n} q_{a b}^{p}}
\end{aligned}
$$

We call

$$
V\left(\left\{q_{a b}\right\}_{o c b}\right)=\left(\prod_{a=1}^{n} \int_{S^{N}} d \vec{\sigma}^{a}\right) \prod_{a<b} \delta\left(q\left(\vec{\delta}^{a}, \overrightarrow{\sigma^{b}}\right)-q_{a b}\right)=e^{N S\left[\left\{q_{a b}\right\}\right]+o(N)}
$$

where $s[]$ is the entropy of configurations satisfying the constraint on the overlaps being equal to gab.

We introduce the $n \times n$ matrix with components:

$$
Q_{a b}=\left\{\begin{array}{ll}
q_{a b} & a<b \\
1 & a=b
\end{array} \quad\right. \text { OVERLAP }
$$

Then it can be shown (exercise! solution below) that

$$
V[Q]=e^{N S[Q]+0(N)}, S[Q]=\frac{n}{2} \log (2 \pi e)+\frac{1}{2} \log \operatorname{det}[Q]
$$

and thus:

$$
\overline{Z^{n}}=\int \prod_{a<b} d q_{a b} e^{N\left\{\frac{\beta^{2}}{2} \sum_{a, b} q_{a b}^{p}+\frac{n}{2} \log (2 \pi e)+L \log d e t[Q]\right\}}
$$

This theory now is expressed only in terms of Q :

$$
\begin{aligned}
& \overline{Z^{n}}=\int \prod_{a<b} d q_{a b} e^{N} A_{n}[Q]+o(N) \\
& A_{n}[Q]=\frac{B_{2}^{2}}{\frac{2}{2}} \sum_{a, b} q_{a b}^{p}+\frac{n}{2} \log \left(z_{a e}\right)+\frac{1}{2} \log \operatorname{det}[Q]
\end{aligned}
$$

Step 2: re-wite the integral over configurations as integral over emerging order parameter qua. Same as magnetization for mean-hield Icing:

In the replica calculation, have $\frac{n(n-1)}{2}$ Order parameters to integrate
over. We started with Nn variables: HUGE
dimensionality reduction due to mean-field.

STEP 3: SADDLE-POINT, SELECTING THE TYPICAL
For large N, the integral oven the space of $n \times n$ matrices Q can be computed with a saddle-point approximation.
The derivative with respect to a matrix Q has to be intended as the derivative writ. its components:

$$
\frac{\partial \sum_{c, a} q_{c d}^{p}}{\partial q_{a b}}=2 p q_{\text {symmetry } Q} q_{a b}^{p-1}, \frac{\partial}{\partial q_{a b}} \log \operatorname{det}[Q]=2\left(Q^{-1}\right)_{a b}
$$

Therefore the saddle point equations read

$$
\beta^{2} p q_{a b}^{p-1}+\left.\left(Q^{-2}\right)_{a b}\right|_{Q=Q^{*}}=0 \quad \text { for all } a<b \quad(* *)
$$

$Q^{*}=$ saddle-point value
To proceed, need to make assumptions on structure of $q_{a b}$ at the saddle point: a "Variational ansatz".

Comment: there is one simple solution to the saddle point equations:

$$
Q_{a}^{*}=\left(\begin{array}{llll}
1 & n \times n & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 2 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)=1
$$

This solves trivially the equations since both terms in (**) are zero.

In this case:

$$
\overline{Z^{n}}=e^{N A_{n}\left[Q_{n}^{*}\right]+o(N)}=e^{N n\left\{\log (2 \pi e)+\beta^{2} / 2\right\}+o(N)}
$$

Using the replica tick:

$$
f=-\frac{1}{\beta} \lim _{n \rightarrow \infty} \lim _{n \rightarrow 0} \frac{\overline{z^{n}-1}}{N n}=-\frac{1}{\beta}\left\{\frac{\log (2 \pi e)}{2}+\beta^{2} / 2\right\}
$$

same result as the annealed.
At high T, this is the good solution.
There is a critical temperature T_{c} there is another solution, with lower free energy than the above!

Extra: Volume Term

$$
\begin{aligned}
& \begin{aligned}
V & =\left(\prod_{a=1}^{n} \int d \vec{\sigma}^{a}\right) \prod_{a<b} \delta\left(q\left(\bar{\sigma}^{a}, \vec{o}^{b}\right)-q_{a b}\right) \prod_{a} \delta\left(q\left(\sigma^{a}, \sigma^{a}\right)-1\right) \\
& =N^{\frac{n(n-1)+n}{2}}\left(\prod_{a=1}^{n} \int d \vec{\sigma}^{a}\right) \prod_{a<b} \delta\left(\vec{\sigma}^{a} \cdot \bar{\sigma}^{b}-N q_{a b}\right) \prod_{a} \delta\left(\bar{\sigma}^{a} \cdot \sigma^{-a}-N\right)
\end{aligned} \\
& =N^{\frac{n(n+1)}{2}}\left(\prod_{a=1}^{n} \int d \vec{\sigma}^{a}\right) \int \prod_{a \leqslant b} \frac{d \lambda_{a b}}{\sqrt{2 \pi}} e^{i \sum_{a \leq b} \lambda_{a b}\left(\vec{\sigma}^{a} \cdot \vec{\sigma}^{b}-Q_{a b} N\right)} \\
& \text { Where } Q_{a b}= \begin{cases}q_{a b} & \text { if } a<b \\
1 & \text { if } a=b \\
q_{a b} & \text { if } b<a\end{cases} \\
& =\left(\frac{N}{\sqrt{2 \pi}}\right)^{\frac{n(n+1)}{2}} \prod_{a \leq b} d \lambda_{a b} e^{-i N \sum_{a \leq b} \lambda_{a b} Q_{a b}}\left[\iint_{a=1}^{n} d \vec{\sigma}^{a a} e^{i \sum_{a \leq b} \lambda_{a b} \bar{\sigma}^{a} \cdot \overrightarrow{\sigma^{b}}}\right]
\end{aligned}
$$

Now, $\sum_{a \leq b}=\frac{1}{2} \sum_{a \neq b}(\cdot \cdot)+\sum_{a}(--1$

Call $\quad \tilde{\lambda}_{a b}=\left\{\begin{array}{cc}-\frac{i \lambda_{a b}}{2} & a \neq b \\ -i \lambda_{a a} & a=b\end{array}\right.$

And get:

$$
=\left(\frac{N}{\sqrt{2 \pi}}\right)^{\frac{n(n+1)}{2}} \int \prod_{a \leqslant b} d \lambda_{a b} e^{N \sum_{a, b} \tilde{\lambda}_{a b} Q_{a b}}\left[\iint_{a=1}^{n} d \vec{\sigma}^{-\frac{1}{2} \sum_{a, b} 2 \tilde{\lambda}_{a b} \bar{\sigma}^{a} \cdot \vec{\sigma}^{b}}\right]
$$

Now, the integral oven the variables σ_{i}^{a} is a multivariate Gaussian integral. One has:

$$
\begin{aligned}
I & =\int_{a=1}^{n} \prod_{i=1}^{N} d \sigma_{i}^{a} e^{-\frac{1}{2} \sum_{a, b} \sum_{i j} \sigma_{i}^{a}\left(2 \tilde{\lambda}_{a b} \delta_{i j}\right) \sigma_{j}^{b}} \\
& =(2 \pi)^{\frac{N n}{2}}[\operatorname{det}(2 \tilde{\Lambda})]^{-\frac{N}{2}}=e^{\frac{N n}{2} \log (2 \pi)-\frac{N}{2} \log (\operatorname{det}[2 \tilde{\Lambda}])}
\end{aligned}
$$

Now, we are left with:

$$
\begin{aligned}
& V=\left(\frac{N}{\sqrt{2 \pi}}\right)^{\frac{n(n+1)}{2}}(2 \pi)^{\frac{N n}{2}} \int_{a \leq b} d \lambda_{a b} e^{N \sum_{a, b} \tilde{\lambda}_{a b} Q_{a b}-\frac{N}{2} \log \operatorname{det}[2 \tilde{\Lambda}]} \\
& =C_{N, n}(2 \bar{u})^{\frac{N n}{2}} \int_{a \leq b} \pi_{\lambda a b} \tilde{\lambda}_{a b}^{N+R(\tilde{\Lambda} Q)-\frac{N}{2} \log \operatorname{det}[2 \tilde{A}]}
\end{aligned}
$$

This is an integral in matrix space that can be performed win a saddle point, which gives:

$$
\begin{aligned}
& Q-\frac{1}{2}(\tilde{\Lambda})^{-1}=0 \Rightarrow \tilde{\Lambda}^{*}=(2 Q)^{-1} \\
& \left.\operatorname{det}[2 \tilde{A}]\right|_{\tilde{\Lambda}=\Lambda^{*}} ^{\Rightarrow} \operatorname{det}\left[Q^{-2}\right]=(\operatorname{det} Q)^{-1}
\end{aligned}
$$

Putting every thing together:

$$
\begin{aligned}
V & =e^{\frac{N n}{2} \log (2 a)+\frac{N n}{2}+\frac{N}{2} \log \operatorname{det}[Q]} \\
& =e^{\frac{N n}{2} \log (2 \pi e)+\frac{N}{2} \log \operatorname{det}[Q]}
\end{aligned}
$$

One can show that with this choice, the replica caleleation reproduces the annealed calculation we did in Problem $1 \rightarrow$ EXERCISE

However, this is wrong in the low-T phase! There, fluctuations dominate and have to be captured by another structure of the matin: $1 \mathbb{R S B}$.

Assumption 2:

meaning: assume that n replicas organize in n / m groups of site m, with the m falling in similar contigurat. at overlap 9 .

Notice: m is arbitrary parameter, to be optimized-over in saddle point.

