SOLUTIONS TD

Problem 2: the free -energy \& the freezing transition
(1) THE CRITICAL TEMPERATURE 2 FREEZING

We have $Z=\sum_{\alpha=1}^{2^{N}} e^{-\beta E_{\alpha}}=\int d E N(E) e^{-\beta E}=\int_{-N \sqrt{2(\log 2}}^{N \sqrt{2 b 2 z_{2}}} d E e^{N S(E / N)-\beta E+d N)}$
Change variables to $\varepsilon=E \mathbb{N}$: saddle-point coleuldition

$$
Z=\int d \varepsilon e^{N[S(\varepsilon)-\beta \varepsilon]+o(N)}=e^{N} \max _{|\varepsilon|<\sqrt{\log 2}}(S(\varepsilon)-\beta \varepsilon)+o(N)
$$

Call ε_{β}^{*} the point where the maximum is attained. The stationary point satisfies $\frac{\partial S(\varepsilon)}{\partial \varepsilon}-\beta=0=-\varepsilon-\beta$, meaning $\varepsilon=-\beta=-1 / T$. This is acceptable if it belongs to the domain, i.e. $|\varepsilon|<\sqrt{2 \log 2}$, which is true provided that

$$
T \geq 1 / \sqrt{2 \log 2}=T_{g} .
$$

For $T<T_{g}$, the maximum is attained at the boundary of the interval, $\varepsilon_{\beta}^{*}=-\sqrt{2 \log 2}$.
Therefore:

$$
\varepsilon_{\beta}^{*}= \begin{cases}-1 / T & \text { for } T \geqslant T_{g}=1 / \sqrt{2 \log 2} \\ -\sqrt{2 \log 2} & \text { for } T<T_{g}=2 / \sqrt{2 \log 2}\end{cases}
$$

which gives:

This transition is of and order thermodynamically, in the sense that the derivative of the free-energy is continuous at $T=T$.
[21 FLUCTUATIONS, \& BACK TO AVERAGE vS TYPICAL
Let us compute the average of the partition function:

$$
\bar{Z}=\int d E \overline{N(E)} e^{-\beta E}=\int d \varepsilon e^{N\left[\log 2-\frac{\varepsilon^{2}}{2}-\beta \varepsilon\right]+0(N)}
$$

In this case, there is no restriction to the domain, and the saddle point value is always $\varepsilon^{*}=-1 / T$
Then $\quad f_{a}=-\left(T \log 2+\frac{1}{2 T}\right)$
which coincides with the quenched free-energy of the model only when $\tau \geqslant T$. In the low- T phase, this is smaller than the quenched free-energy:

The average \bar{z} is much larger than its typical value, because is dominated by rare events: realizations of the randomness for which there are energies $E \alpha<-N \sqrt{2 \log 2}$, which occur with exponentially small probability. However, this exponential smallness is compensated by the largeness of the Boltzmann weight when computing the average.

The typical value $z^{\text {tsp }}$ accounts only for instances ocwcring with probability of $\theta(1)$ when $N \rightarrow \infty$.

EntRopy catastrophe

Let us look at the entropy in the two phases. The equation for ε_{β}^{*} graphically corresponds to choosing ε_{β}^{*} such that the tangent of $S(\varepsilon)$ at $\varepsilon_{\mathrm{B}}^{*}$ has slope β :

As β increases, ε_{β}^{*} decreases until one reaches a maximal value: $\beta_{f}=1 / \mathrm{Tg}$

The maximal slope corresponds to $\varepsilon^{*}=-\sqrt{2 e a g} 2$, where $S(\varepsilon)$ Vanishes: for $\beta>\beta_{g}$, the saddle port is stuck there an $S(\varepsilon)=0$. At T_{8} one also has a transition from positive to zero entropy:

The overlap distribution is:

$$
P(q)=\sum_{\alpha, \beta} \frac{z_{\alpha} z_{\beta}}{z^{2}} \delta\left(q-q\left(\vec{\sigma}^{\alpha}, \bar{\sigma}^{\beta}\right)\right) \quad z_{\alpha}=e^{-\beta E\left(\vec{\sigma}^{x}\right)}
$$

Partition function

It is Convenient to split the cases $\alpha \neq \beta$ and $\alpha=\beta$:

$$
P(q)=\sum_{\alpha} \sum_{\beta i \beta \neq \alpha} \frac{z_{\alpha} z_{\beta}}{z^{2}} \delta\left(q-q_{\alpha \beta}\right)+\sum_{\alpha} \frac{z_{\alpha}^{2}}{z^{2}} \delta(q-1)
$$

probability to extract two \neq configurations when sample twice with Boltzmann weight

- Now, y one extracts two clifferent configurations $\vec{\sigma}^{\alpha}$ and $\vec{\sigma}^{\beta}$ with a Bolkmann measure, in the REM the overlap between them is independent of their energies, because the energies E_{α} are assigned randomly to the configurations. The two configurations $\bar{\sigma}^{\alpha}$ and $\bar{\sigma}^{\beta}$ are uncorrelated random vectors of ± 1; their overlap is a sum of uncorrelated ± 1 variables: its typical value is zero. Therefore:

$$
P(q)=\sum_{\alpha} \sum_{\beta: \beta \neq \alpha} \frac{z_{\alpha} z_{\alpha}}{z^{2}} \delta(q)+\sum_{\alpha} \frac{z_{\alpha}^{2}}{z^{2}} \delta(q-1)
$$

- Call $I_{2}=\sum_{\alpha} \frac{z_{\alpha}^{2}}{z^{2}}$.

Then, averaging over all possible realizations of the model:

$$
\overline{P(q)}=\overline{I_{2}} \delta(q-1)+\left(1-\overline{I_{2}}\right) \delta(q)
$$

- Let us compute the probability to extract the same configuration from a Boltzmann measure at temperature T.
When $N \rightarrow \infty$, the Belzmann weight $Z \alpha / Z$ selects configurations with the equilibiom energy density $\varepsilon_{\beta}^{\alpha}$. With $p م b \simeq 1, \vec{\sigma}^{\alpha}$ and $\vec{\sigma}^{\beta}$ will have this energy. Given $\vec{\sigma}^{\alpha}$, the probability to re-extract $\vec{\sigma}^{\alpha}$ goo the family of $N\left(\varepsilon_{\beta}^{\prime}\right)$ configurations with the correct energy density is:

$$
\overline{I_{2}}=\frac{1}{N\left(\varepsilon_{\beta}^{*}\right)}=e^{-N S\left(\varepsilon_{f}^{*}\right)+d(N)}
$$

Therefore, when $\left|\varepsilon_{\beta}^{*}\right|<\sqrt{2 \log 2}$, since $s\left(\varepsilon_{\beta}^{x}\right)>0$ this probability decays to zero exponentially fast when $N \rightarrow \infty$. This is what happens for $T>\tau$. Thus

$$
\overline{P(q)}=\delta(q) \quad \text { for } \quad T>T_{g}
$$

The system is in a "paramagnetic" phase: equilibrium configurations (i.e., extracted from Boltzmann measure) are uncorrelated, $q=0$. Like in highT phase of ferromagnet.

When $T<T_{c}, S\left(\varepsilon_{\beta}^{*}\right)=0$ and $\bar{I}_{2} \sim \theta(1)$: our large $-N$ expansion is not enough to compute the average.

- It can be shown that for $T<T_{c}$:

$$
\overline{I_{2}}=\left.\frac{T_{z}}{T} \frac{d}{d \mu} \log \int_{0}^{\infty}\left(1-e^{-u-\mu u^{2}}\right) u^{-\frac{T-1}{T}} d u\right|_{\mu=0}
$$

One has:

$$
\left.\frac{d}{d \mu} \log (\cdots)\right|_{\mu=0}=\frac{\int_{9}^{\infty} e^{-u} u^{-T / T_{j}+1} d u}{\int_{0}^{\infty}\left(1-e^{-u}\right) u^{-T / T_{f}-1} d u}=\frac{\Gamma\left(2-T\left(T_{f}\right)\right.}{-\Gamma\left(T / T_{f}\right)}
$$

Using that $T(z)=\int_{0}^{\infty} d t t^{z-2} e^{-t}$ and that

$$
\begin{aligned}
\int_{0}^{\infty}\left(1-e^{-u}\right) u^{-z-1} d u & =\left.\frac{u^{-z}}{-z}\left(1-e^{-u}\right)\right|_{0} ^{\infty}-\int_{0}^{\infty} \frac{e^{-u} u^{-z}}{-z}=+\left.\frac{e^{-u} u^{-z}}{-z}\right|_{0} ^{\infty} \\
& -\int_{0}^{\infty} e^{-u} u^{-z-1} d u=-M(-z)
\end{aligned}
$$

Since $\frac{R(2-z)}{-\Gamma(-z)}=z(1-z)$ we find:

$$
\begin{aligned}
& \bar{I}_{2}=\frac{T_{f}}{T} \frac{T}{T_{f}}\left(1-\frac{T}{T_{f}}\right)=1-T_{f} \\
& \Rightarrow P(q)=\left(1-\frac{T}{T_{f}}\right) \delta(q-1)+T_{/} \delta(q) \quad T_{f} T_{f}
\end{aligned}
$$

Interpretation: glass phase!
In the low-T phase, the Boltzmann weight is dominated by sub-exponentically many configurations: The probability to pick up the same is $\theta(1)$. Consistent with entropy catastrophe! However, there are more than one configuration, and they are very different prom each others: thus, there is also a finite probability to extract two of them at $q=0$. (this is not the case in a ferromagnet!). Only for $T \rightarrow 0$, the probability to pick up the same goes to one: this configuration is the ground state!

Comments:
(A) In this calculation we used the fact that $q \alpha \beta$ and E_{α}, E_{β} are unrelated to each others: this is a peculiarity of the REM!
In other models, the Parget is $q_{\alpha \beta}$ (the more $\bar{\sigma}^{\alpha}$ and $\bar{\sigma}^{\beta}$ are similar), the more the energies $E_{\alpha}=E\left(\vec{\sigma}^{\alpha}\right)$ and $E_{\beta}=E\left(\vec{\sigma}^{\beta}\right)$ will be correlated.
(B) Deriving the expression for $\overline{I_{2}}$ for $\tau<\tau_{c}$ is not trivial with a clirect approach. The replica method that we clisuss in next DDs gives an alternative way to do so!

