SOLUTIONS TD8 Anderson on Bethe Lattice (1/2)

Problem 8 : BETHE LATTICE, RECURSIONS, CAVITY

I GREEN FUNCTIONS IDENTITIES

By definition,

$$G = (Z - H)^{-1} = [(Z - H_0)(1 - (Z - H_0)^{-1}V)]^{-1} = (1 - (Z - H_0)^{-1}V)^{-1} G^{\circ}$$

Multiplying to the left by $1 - (Z - H_0)^{-1}V$ we get:
 $(1 - G^{\circ}V)G = G^{\circ} \Rightarrow G - G^{\circ}VG = G^{\circ} \Rightarrow G = G^{\circ}VG + G^{\circ}$
When iterated, this relation gives rise to the
perhubative series for G:
 $G = G^{\circ} + G_{\circ}VG_{\circ} + G_{\circ}VG_{\circ} + \cdots$

ZI CAVITY EQUATIONS

In this case, the term V corresponds to the three links in pink in the figure.

Removing those links, one is decoupling the root from the (K+1) subtrees with vertex as,..., ax.

In particular, $H_0 = W \varepsilon_0 |_{0} \times |_{t=1}^{\infty} H_{t}^{(\omega)}$ where $H_{t}^{(\omega)}$ is the Hamiltonian restricted to the subtree with vertex a_i , i=1,...,k+1. Since each subtree is completely clisconnected with the root, the Green function $G_{a_i}^{(\omega)}$ depends only on the Hamiltonian restricted to the subtree: it is the same that one would get removing the site Q.

The Green Function relation can be iterated at any order
let us go to 2nd Orden in V:
$$G = G_0 + G_0 \vee G_0 + G_0 \vee G_0 \vee G_0$$

let us take matrix elements:
 $G_{00} = G_{00}^0 + \leq G_{00} \vee G_{0$

Now, Goa is non zero only for a=0, and $V_{00}=0$: the first order vanishes. Also, Voa is non-zero only if $a \in \{\alpha_1, \dots, \alpha_{NM}\}$, the heighbors of 0, and it equals to -Voa:.

[hus:

$$\begin{aligned}
G_{00} &= G_{00}^{\circ} + \underset{i=1}{\overset{k_{1}}{\overset{\circ}{\underset{i=1}}}} G_{100}^{\circ} \vee_{0a_{i}} G_{a_{i}a_{i}}^{\circ} \vee_{a_{i}0} G_{00} &= 7 G_{00} = \left(1 - G_{00}^{\circ} \underset{i=1}{\overset{k_{1}}{\overset{\circ}{\underset{i=1}}}} V_{0a_{i}}^{2} G_{1a_{i}}^{\alpha\nu}\right)^{-1} G_{100}^{\circ} \\
\end{aligned}$$
Using that $G_{00}^{\circ} = (z - z_{0})^{-1}$, we get the first equation.

Let us iterate this procedure: We consider a subtree with Origin in a, and define V the Rinks connecting the origin to the "descendents":

3 EQUATIONS FOR THE DISTRIBUTION

The functions G_{b1}^{cav} and G_{b1}^{cav} depend Only on the sites (and on the rendomness ϵ :) in the subtree T_1 , which is not overlapping with the subtree T_2 .

Thefore, the two random function are independent. Moreover, they are statistically equivalent (the sub-trees are statistically identical), and so they can be considered as identically distributed variables.

4 THE "LOCALIZED" SOLUTION

• We have $\sigma_a = Ra - i \Gamma_a$

The cavity equation becomes: Ra:(E+in)-i[a:(E+in)] = $\leq \sqrt{2} = \sqrt{2}$ be da: $\sum_{k=2}^{2} \sqrt{2} = \frac{1}{[E-\epsilon_{k}-$ Equations.

- The equation for T_{a} is satisfied, for $\eta=0$, setting $T_{a}=T_{b}=0$. The solution P=O corresponds to localization. It is always a solution when $\eta=0$.
- The Anderson criterion States that in the Coralized phase, when nvo the distribution of P tends to S(P). This means that the solution P=0, which holds for n=0, remains 2 stable solution also when adding n>0, taking N→∞ and then switching off n.

TO ESTABLISH LO(ALIZATION, WE HAVE TO STUDY THE STABILITY OF THE SOLUTION $\mathbb{P}(\mathbb{P}) = \mathcal{S}(\mathbb{P})$.