SOLUTIONS TD4
The replica method (2/2)

Problem 4.1: The RS calculation
[1] The rs overlap distribution
Under the RS assumption, the overlap distribution is simply:

$$
\bar{P}(q)=\delta\left(q-q_{0}^{*}\right)
$$

The overlap can take only one
 value, that must coincide with the overlap between configurations in the same pure state, which is therefore unique. Also, $q_{t A}=q_{0}^{*}$.

RS FREE-ENERGY

$$
Q^{-1}=\left(\begin{array}{cccc}
a & b & b & b \\
b & a & b & b \\
b & b & & b \\
b & b & b & \\
a
\end{array}\right)
$$

Same RS structure as Q

To determine a and b, impose $Q \cdot Q^{-1}=\mathbb{1}$.
We have:

$$
Q \cdot Q^{-1}=\left(\begin{array}{cccc}
c_{1} & c_{2} & \ldots & c_{2} \\
c_{2} & c_{2} & & \\
\vdots & & \ddots & \\
c_{2} & & & c_{1}
\end{array}\right)
$$

where

$$
\begin{aligned}
& c_{1}=a+b q_{0}(n-1)=\frac{1+(n-2) q_{0}-(n-1) q_{0}^{2}}{1+(n-2) q_{0}-(n-1) q_{0}^{2}}=1 \\
& c_{2}=a q_{0}+b+(n-2) q_{0} b=\frac{q_{0}+(n-2) q_{0}^{2}-q_{0}-(b-2) q_{0}^{2}}{1+(n-2) q_{0}-(n-1) q_{0}^{2}}=0 \\
& \Rightarrow\left\{\begin{array}{l}
a=\frac{1+(n-2) q_{0}}{\left[1+(n-2) q_{0}-(n-1) q_{0}^{2}\right]} \\
b=\frac{-q_{0}}{\left[1+(n-2) q_{0}-(n-1) q_{0}^{2}\right]}
\end{array}\right.
\end{aligned}
$$

The saddle-point equation reads:

$$
\begin{aligned}
& \beta^{2} p q_{0}^{p-1}-\frac{q_{0}}{1+(n-2) q_{0}-(n-1) q_{0}^{2}}=0 \\
& (n \rightarrow 0) \Rightarrow \beta^{2} p q_{0}^{p-1}-\left.\frac{q_{0}}{\left(1-q_{0}\right)^{2}}\right|_{q_{0}^{*}}=0
\end{aligned}
$$

Which is solved by $\varphi_{0}^{*}=0$. This is the paramagnetic solution: the typical overlap between two equilibrium configurations is zero, meaning that the magnetization patterns are uncorrelated.

In problems 3 we got:

$$
\overline{Z^{n}}=\int \prod_{a<b} d q_{a b} e^{N q_{n}[Q]+d(N)}
$$

with $A_{n}[Q]=\frac{n}{2} \log (2 \pi e)+\frac{1}{2} \log \operatorname{det} Q+\frac{\beta^{2}}{2} \sum_{a, b} q_{a b}^{p}$

If $q_{0}^{*}=0$, then $Q^{*}=\mathbb{1}$ and

$$
\bar{Z}^{n}=e^{\frac{\alpha n}{2} \log (2 \pi e)+\frac{\alpha n}{2} \beta^{2}+o(N)}
$$

and using the replica trick:

$$
f=\lim _{N \rightarrow \infty} \lim _{n \rightarrow 0} \frac{-1}{\beta}\left(\frac{\overline{z^{n}}-1}{N n}\right)=-\frac{1}{\beta}\left[\frac{\log (2 \pi e)}{2}+\beta^{2} / 2\right]=f a
$$

The RS free-energy coincides with the annealed.

Problem 4.2: The RSB calculation

THE 1RSB OVERLAP DISTRIBUTION

We have $\overline{P(q)}=\lim _{n \rightarrow 0} \frac{2}{n(n-1)} \sum_{a>b} \delta\left(q-q_{a b}^{*}\right)$
In the 1-RSB ansatz with parameters $\mu^{*}, q_{0}^{*}, q_{1}^{*}$:

$$
\begin{aligned}
& \sum_{a>b} \delta\left(q-q_{a b}^{*}\right)=\frac{n}{\mu_{\uparrow}^{*}} \frac{\mu^{*}\left(\mu^{*}-1\right)}{2} \delta\left(q-q_{1}^{*}\right)+ \\
& \begin{array}{c}
\text { number of } \\
\text { off-diaepo }
\end{array} \\
& \text { in each block } \\
& +\left[\frac{n(n-1)}{2}-\frac{n}{\mu^{*}} \frac{\mu^{*}\left(\mu^{*}-1\right)}{2}\right] \delta\left(q-q_{0}^{*}\right) \\
& \overline{P(q)}=\lim _{n \rightarrow 0}\left[\frac{\mu^{*}-1}{n-1} \delta\left(q-q_{1}^{*}\right)+\left(\frac{n-\mu^{*}}{n-1}\right) \delta\left(q-q_{0}^{*}\right)\right] \\
& =\left(1-\mu^{*}\right) \delta\left(q-q_{1}^{*}\right)+\mu^{*} \delta\left(q-q_{0}^{*}\right)
\end{aligned}
$$

Therefore, the overlap distribution now has two peaks: one which corresponds to the overlap within one state, and one with the overlap between replicas falling in different states. Like in REM.

The quantity $\left(1-\mu^{*}\right)$ gives the probability that extracting two configurations at equilibrium, they are found in the same pure state. In the REM, we got $q_{2}^{*} \rightarrow 1, q_{0}^{*} \rightarrow 0$ and $\mu^{*}=T / T_{\gamma}$ for $T \leqslant T$. In the spherical p-spin, these parameters have to be fixed by the saddle point equations.

1 RIB FREE-ENERGY 2 SADDIE POINT EQUations
The expression of the $12 S B$ free-energy is derived below. The RS limit is obtained when $\mu \rightarrow 1$.
let us derive the saddle point equations.

- Equation for q_{0}

$$
\begin{gathered}
\frac{\partial \delta_{12 s B}}{\partial q_{0}}= \\
=\frac{-1}{2 \beta}\left[-\mu p \beta^{2} q_{0}^{p-1}-\frac{1}{\mu\left(q_{2}-q_{0}\right)+1-q_{1}}+\frac{\left[\mu\left(q_{2}-q_{0}\right)+1-q_{1}\right]+q_{0} \mu}{\left[\mu\left(q_{1}-q_{0}\right)+1-q_{2}\right]^{2}}\right] \\
\quad-\frac{-1}{2 \beta}\left[-\mu p \beta^{2} q_{0}^{p-1}+\frac{q_{0} \mu}{\left[\mu\left(q_{2}-q_{0}\right)+1-q_{2} z^{2}\right.}\right]=0
\end{gathered}
$$

This admits the solution $q_{0}^{*}=0$.

- equation for q_{2}

$$
\begin{aligned}
\frac{\partial f_{1 R s B}}{\partial q_{1}}= & \frac{-1}{2 \beta}\left\{\beta^{2} p(\mu-1) q_{1}^{p-1}-\frac{(\mu-1)}{\mu} \frac{1}{1-q_{1}}+\frac{(\mu-1)}{\mu\left[\mu\left(q_{1}-q_{0}\right)+1-q_{2}\right]}+\right. \\
& \frac{-q_{0}(\mu-1)}{\left.\left[\mu\left(q_{1}-q_{0}\right)+1-q_{1}\right]^{2}\right]=0}
\end{aligned}
$$

For $q_{0}=0$ this becomes:

$$
\beta^{2} p(\mu-1) q_{1}^{p-1}-\frac{\mu-1}{\mu} \frac{1}{1-q_{2}}+\frac{(\mu-1)}{\mu\left[1+(\mu-1) q_{1}\right]}=0 \quad \text { (1) }
$$

- EqUATION FOR μ

$$
\begin{aligned}
\frac{\partial f_{2 \Omega S B}}{\partial \mu}= & \frac{-1}{2 \beta}\left\{\beta^{2}\left(q_{1}^{p}-q_{0}^{p}\right)+\frac{1}{\mu^{2}} \log \left(\frac{1-q_{1}}{1-q_{1}+\mu\left(q_{2}-q_{0}\right)}\right)+\right. \\
& \left.+\frac{1\left(q_{2}-q_{0}\right)}{\mu\left[1-q_{2}+\mu\left(q_{2}-q_{0}\right)\right]}-\frac{\left(q_{2}-q_{0}\right) q_{0}}{\left[1-q_{1}+\mu\left(q_{1}-q_{0}\right)\right]^{2}}\right\}=0
\end{aligned}
$$

For $q_{0}=0$:

$$
\beta^{2} q_{2}^{p}+\frac{1}{\mu^{2}} \log \left(\frac{1-q_{1}}{1+(q-1) q_{2}}\right)+\frac{q_{2}}{\mu\left[1+(\mu-1) q_{2}\right]}=0 \quad \text { (2) }
$$

[3] THE "RANDOM FIRST ORDER" TRANSITION
The 1RSB saddle point equations always admit the solution $\mu^{*}=1, q_{0}^{*}=0=q_{1}^{*}$: the paramagnet.
However, when $\tau_{\leqslant} \tau_{c}$ a second solution appears, which has a lower free-energy. We assume that μ^{*} is continuous at $T=T_{c}$, meaning that $\mu^{*}=1$ also at T_{c}. Then equation (1) is satisfied, and equation (2) becomes:

$$
\beta^{2} q_{1}^{p}+\log \left(1-q_{1}\right)+q_{1}=0
$$

One can study this equation graphically for various β and P.
Let $F\left(q_{1}\right)=\beta^{2} q_{1}^{p}+\log \left(1-q_{1}\right)+q_{1}$
One sees that $\left\{\begin{array}{l}F\left(q_{1}=0\right)=0 \\ F\left(q_{1}=1\right)=-\infty\end{array}\right.$
To Vanish at some point $q_{1} \neq 0$, the function $F\left(q_{2}\right)$ must be non-monotonic. Take $p=3$.
One can show that $F^{\prime}\left(q_{1}^{m}\right)=0$ for $q_{1}^{m}=\frac{1+\sqrt{1-\frac{4}{3} 1 / \beta^{2}}}{2}$ and $F\left(q_{1}^{m}\right) \stackrel{\beta \rightarrow \infty}{=} \beta^{2}+\log \left(1 / \beta^{2}\right) \xrightarrow{\beta \rightarrow \infty} \infty$
Therefore, for Small $T($ large $\beta)$ the function $F\left(q_{1}\right)$ must coss zero at some $q_{1}>0$ because:

In fact, there exists a T_{c} such that:

Numerically,

$$
\beta_{c} \simeq 1.2066=1 / \mathrm{c}_{c}
$$ for $p=3$.

Thus:
(a) $T>T_{c}: \mu^{*}=1, q_{0}^{*}=0=q_{1}^{*}$. Paramagnet
(b) $T=T_{c}: \mu^{*}=1, q_{0}^{*}=0, q_{1}^{*}>0-$ jump in q_{1}^{*} !
(c) $T<T_{c}: \mu^{*}<1, q_{0}^{*}=0, q_{1}^{*}>0: \partial s T \rightarrow 0, q_{1}^{*} \rightarrow 1$ and $\mu^{*} \rightarrow 0$. The overlap $q_{2}^{*}=q_{\varepsilon_{A}}$ changes with T in the low- T phase, at veriznce with REM

Extra: derivation 1RSB free-energy.
In Problems 3 we obtained:

$$
\begin{aligned}
& \overline{Z^{n}}=\int \prod_{a<b} d q_{a b} e^{N \theta_{n}^{[Q]+o(r)}} \\
& q_{n}[q]=\frac{\beta^{2}}{2} \sum_{a, b} q_{a b}^{p}+\frac{n}{2} \log (2 \pi e)+\frac{1}{2} \log d e t(Q]
\end{aligned}
$$

We now plug the 1 RSB structure of Q.

$$
\sum_{a, b} q_{a b}^{p}=n+\frac{n}{\mu} \mu\left(\mu_{-1}\right) q_{1}^{p}+\left(n(n-1)-\frac{n}{\mu} \mu\left(\mu_{-1}\right)\right) q_{0}^{p}
$$

The expression for the determinant can be obtained diagonalizing Q and taking the product of the eigenvidues with the correct degeneracy. This gives:

$$
\begin{aligned}
\log \operatorname{det} Q= & n \frac{(\mu-1))}{\mu} \log \left(1-q_{2}\right)+\frac{n-\mu}{\mu} \log \left[\mu\left(q_{1}-q_{0}\right)+1-q_{2}\right] \\
& +\log \left[n q_{0}+\mu\left(q_{0}-q_{0}\right)+1-q_{2}\right]
\end{aligned}
$$

Since we need $n \rightarrow 0$, we now expand $A_{n}[Q]$ around $n=0$ up to linear order. We get:

$$
\sum_{a, b} q_{a b}^{p}=n\left[1+(\mu-1) q_{1}^{p}-\mu q_{0}^{p}\right]+\theta\left(n^{2}\right)
$$

and

$$
\begin{aligned}
& \log \left[n q_{0}+\mu\left(q_{1}-q_{0}\right)+1-q_{1}\right]= \\
& =\log \left[\left(\mu\left(q_{1}-q_{0}\right)+1-q_{1}\right) \cdot\left(1+\frac{n q_{0}}{\mu\left(q_{1}-q_{0}\right)+1-q_{1}}\right)\right]= \\
& =\log \left[\mu\left(q_{1}-q_{0}\right)+1-q_{2}\right]+\frac{n q_{0}}{\mu\left(q_{1}-q_{0}\right)+1-q_{1}}+\theta\left(n^{2}\right)
\end{aligned}
$$

Thus:

$$
\begin{aligned}
A_{n}[Q]= & n\left\{\frac{\beta^{2}}{2}\left[1+(\mu-1) q_{1}^{p}-\mu q_{0}^{p}\right]+\frac{\log (2 \pi e)}{2}+\frac{1}{2} \frac{\mu-1}{\mu} \log \left(1-q_{1}\right)\right. \\
& \left.+\frac{1}{2} \frac{1}{\mu} \log \left[\mu\left(q_{1}-q_{0}\right)+1-q_{1}\right]+\frac{1}{2} \frac{q_{0}}{\mu\left(q_{1}-q_{0}\right)+1-q_{1}}\right\}+\theta\left(n^{2}\right) \\
= & n A_{0}[Q]+\theta\left(n^{2}\right)
\end{aligned}
$$

Therefore, once the saddle-point is performed:

$$
\overline{Z^{n}}=e^{N\left\{n A_{0}\left[Q^{*}\right]+\sigma\left(n^{2}\right)\right\}_{+0}(N)}
$$

$\Rightarrow f=\lim _{N \rightarrow \infty} \lim _{n \rightarrow 0} \frac{-1}{\beta}\left(\frac{\overline{Z^{n}}-1}{N_{n}}\right)=-\frac{1}{\beta} A_{0}\left[Q^{\infty}\right]$ which is the given expression.

