
Introduction to Random Matrices

1 Recap: Matrices with real spectrum

We define X = [Xij ] as an N ×N matrix, where the elements Xij are real
or complex numbers. The N eigenvalues {λ1, . . . , λN} of X are generally
complex. However, there are two classes of matrices whose eigenvalues are
real:

• real symmetric matrices,

• complex Hermitian matrices.

1.1 Real Symmetric Matrices

A matrix X is real and symmetric if Xij = Xji, which can be written as
Xt = X, where Xt is the transpose of X.

A real symmetric matrix can be diagonalized by an orthogonal matrix
O, such that O−1 = Ot. This means OtO = I, where I is the N×N identity
matrix.

Example

Let us consider the matrix:

X =

[
4 1
1 3

]
.

This matrix is symmetric, as Xt = X. To diagonalize X, we find its eigen-
values and eigenvectors.

The eigenvalues λ are found by solving the characteristic equation:

det(X − λI) = 0,

where I is the identity matrix. Substituting X:

det

[
4− λ 1
1 3− λ

]
= 0.
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Expanding the determinant:

(4− λ)(3− λ)− 1 = λ2 − 7λ+ 11 = 0.

Solving this quadratic equation gives the eigenvalues:

λ1 = 5, λ2 = 2.

Next, we find the eigenvectors. For λ1 = 5, solve (X − 5I)v1 = 0. This

gives v1 =

[
1/
√
2

1/
√
2

]
(normalized). For λ2 = 2, solve (X − 2I)v2 = 0. This

gives v2 =

[
−1/

√
2

1/
√
2

]
(normalized). The orthogonal matrix O formed by the

normalized eigenvectors is:

O =

[
1√
2

− 1√
2

1√
2

1√
2

]
.

It correspond to a rotation of 45 degrees with

O =

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

]
.

It The diagonalized form of X is:

D = OtXO =

[
5 0
0 2

]
.

1.2 Complex Hermitian Matrices

A matrix X is complex and Hermitian if Xij = X∗
ji, which can be written

as X† = X, where X† is the conjugate transpose of X.
A complex Hermitian matrix can be diagonalized by a unitary matrix

U , such that U−1 = U †. This means U †U = I.

Example

Consider the Hermitian matrix:

X =

[
2 i
−i 3

]
.

This matrix satisfies X† = X. Its eigenvalues are λ1 = 1 and λ2 = 4, which
are real.
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The unitary matrix U that diagonalizes X is:

U =

[
1√
2

i√
2

1√
2

− i√
2

]
.

The diagonalized form of X is:

D = U †XU =

[
1 0
0 4

]
.

2 Random Matrices Ensemble

We now study the case of random matrices by introducing a probability
measure on the entries of the matrix X, i.e.,

P [{Xij}]dX.

Here dX =
∏

dXij in the volume element. Depending on the symmetry
of the matrix, we have a different number independent entries and then a
different number of factors.

Exercise 1: the volume element

• For a real symmetric matrix, dX =
∏

1≤i≤j≤N dXij . How many factors
does this product have?

• For a complex matrix, write Xij = xij + iyij with xij , yij real. For a
complex Hermitian matrix, dX =

∏
1≤i≤j≤N dXij . How many factors

does this product have?

• Consider real symmetric random matrices X and a generic orthogonal
matrix O. The matrix Y = OTXO is also symmetric and real. Prove
that the volume element is invariant under the orthogonal transforma-
tion, namely:

dX =
∏
i

dXii

∏
i<j

dXij = dY =
∏
i

dYii
∏
i<j

dYij .

Hint:
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– The N(N+1)
2 independent entries of the matrix Y can be written

as a linear combination of the N(N+1)
2 independent entries of the

matrix X:
Yij =

∑
kl

Jij,klXkl.

Determine the size of the matrix J and show that

Jij,kl = OT
ikOjl.

– For a linear mapping, the transformation of the volume element
is written as:

dX = |det(J)| dY.
Hence, to prove the theorem, it is sufficient to show that J is
orthogonal, namely:

JTJ = I,
where I is the identity matrix.

This invariance is intuitive: orthogonal transformations are simple
rotations of the coordinate system, and the volume element does not
change under rotations. This invariance is also very important for
rotationally invariant matrices, which we will study soon.

2.1 Wigner Random Matrices

A matrix is called a Wigner matrix if its independent entries (i.e., the entries
not fixed by the symmetries) are independent random variables (i.e., there
are no correlations between entries). For real symmetric matrices, a Wigner
matrix ensemble is written as:

P [{Xij}] =
N∏
i=1

fi(Xii)
∏

1≤i<j≤N

fij(Xij).

2.2 Random Matrices Invariant Under Rotation

An ensemble of random matrices is said to be rotationally invariant if its
probability distribution remains unchanged under orthogonal transforma-
tions (for real matrices) or unitary transformations (for complex matrices).

In the real case, for all matricesX in the ensemble and for any orthogonal
transformation O, we have:

P [X] = P [OTXO].
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Key Properties:

• We showed that the volume element is invariant under rotation. Hence,
if Y = OTXO, we can write:

P [X] dX = P [Y ] dY.

• The distribution of rotationally invariant random matrices does not
depend on the choice of coordinate system. It is determined solely
by the eigenvalues of the matrix. The eigenvectors are uniformly dis-
tributed on the unit sphere (of N dimensions for real matrices).

• Matrices from the Gaussian Orthogonal Ensemble (GOE) and Gaus-
sian Unitary Ensemble (GUE) are classic examples of rotationally in-
variant matrices.

Exercise 2: GOE - The Distribution of the Entries

The Gaussian Orthogonal Ensemble (GOE) is defined by the following dis-
tribution:

P (X) ∼ exp
(
−aTrX2

)
,

where a is a positive constant and X is a real symmetric matrix.

• Show that the ensemble is rotationally invariant.

• Derive the probability distribution of the diagonal and off-diagonal
entries of the matrix X with the correct normalization. Explain why
the GOE is both rotationally invariant and a Wigner matrix.

It is possible to show that Gaussian rotationally invariant ensembles are
the only ones that are also Wigner matrices.

Eigenvectors of the GOE

An eigenvector of a GOE matrix of size N × N is a point uniformly dis-
tributed on the hypersphere of dimension N . The simplest way to draw a
point uniformly on the hypersphere is to generate N independent Gaussian
random variables with zero mean and variance 1/N . Indeed, as we have
seen, the N -dimensional Gaussian distribution exhibits the correct spheri-
cal symmetry. For very large N , the variance of 1/N for each component
ensures normalization. For moderate N , normalization must be enforced as
an additional global constraint.
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Exercise 3: GOE Eigenvectors in the Large N Limit

• Show that at large N , two independent vectors drawn from the unit
hypersphere become orthogonal as N → ∞.

2.3 Eigenvalues of GOE

Given a matrix X from the Gaussian Orthogonal Ensemble (GOE), we can
diagonalize it as:

X = OtΛO,

where:

• Λ = diag(λ1, λ2, . . . , λN ) is the diagonal matrix of eigenvalues,

• O is an orthogonal matrix (OtO = I) containing the eigenvectors of
X.

Volume Element Transformation

The volume element dX is expressed in terms of the eigenvalues {λi} and
the orthogonal matrix O, as:

dX = J({λi}) dλ1 dλ2 . . . dλN dµ(O),

where:

• J({λi}) is the Jacobian determinant of the transformation from X to
(Λ, O). It is a function of the eigenvalues only.

• dµ(O) is volume element associated with the eigenvectors. It is a
uniform measure of the angle of the hypersphere.

The Jacobian J({λi}) is not simple to compute. For GOE is given by

J({λi}) =
∏
i<j

|λi − λj |.

The final form of the volume element is:

dX =
∏
i<j

|λi − λj |β dλ1dλ2 . . . dλN dµ(O).

with β = 1 for GOE and β = 2 for GUE. We conclude that the joint
distribution of GOE and GUE has the form

P ({λi}) ∝
∏
i<j

|λi − λj |β exp

(
− 1

2σ2

N∑
i=1

λ2
i

)
.

Here and below we have a = 1/(2σ2).
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Exercise 4: GOE for N = 2

We recover the previous result for the simple N = 2 case of the GOE (for
simplicity we set σ = 1). Consider the 2× 2 matrix:

X =

[
x1 x3
x3 x2

]
,

with eigenvalues λ1 and λ2, and the matrix of eigenvectors:

O =

[
cos θ − sin θ
sin θ cos θ

]
.

Show that the Jacobian of the transformation is |λ1 − λ2|.
Hint:

• Show that:
x1 = λ1 cos

2 θ + λ2 sin
2 θ,

x2 = λ2 cos
2 θ + λ1 sin

2 θ,

x3 = (λ1 − λ2) cos θ sin θ.

• Compute the Jacobian:

J =

∣∣∣∣∣∣∣
∂x1
∂λ1

∂x2
∂λ1

∂x3
∂λ1

∂x1
∂λ2

∂x2
∂λ2

∂x3
∂λ2

∂x1
∂θ

∂x2
∂θ

∂x3
∂θ

∣∣∣∣∣∣∣ .
After a little computation of the determinant of the 3×3 Jacobian matrix,

you will find that:
J = |λ1 − λ2|.

Thus, you can conclude:

P (x1, x2, x3) = exp

[
−1

2
(λ2

1 + λ2
2)

]
|λ1 − λ2| dλ1 dλ2 dθ.

The Jacobian you just computed shows that, even though the entries of
the GOE are independent, their eigenvalues are not. This is a very general
property of the spectrum of correlated systems. It is called level repulsion
because the eigenvalues repel each other.
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Exercise 5: the Wigner surmise

We define s = |λ1 − λ2| as the level spacing between the two eigenvalues.
Compute the probability distribution P (s).

You should find the celebrated Wigner surmise:

P (s) =
s

2
exp

(
−s2

4

)
.

This distribution is exact for N = 2 but works remarkably well for any
GOE, even though it is not exact.

3 Spectral properties in the large N limit

Semicircle Law

Both GOE and GUE matrices, when N → ∞ follow the famous Wigner
semicircle law for the density of eigenvalues, which is defined as the marginal
density obtained from the joint distribution of all eigenvalues. In particu-
lar, for a GOE matrix X with diagonal elements having variance σ2, the
eigenvalue density is given by:

ρ(λ) =
1

2πNσ2

√
4Nσ2 − λ2,

for |λ| ≤ 2
√
Nσ, and ρ(λ) = 0 otherwise.

Tracy Widom distribution

Since the density in the largeN limit is defined on a finite support [−2
√
Nσ, 2

√
Nσ]

which scales like
√
N , one could guess that the maximal (or minimal since

the distribution is symmetric) eigenvalue will be given by the edge of the sup-
port. Indeed, at zero-th order λmax = 2

√
Nσ. The corrections to the zero-th

order are given by the now famous Tracy-Widom distribution. Specifically

λmax = 2
√
Nσ + σN−1/6χβ ,

where χβ is a O(1) random variable following the β-Tracy Widom distribu-
tion with β being Dyson’s index, defined as β = 1 for GOE matrices and
β = 2 for GUE matrices. No explicit formula is known for the Tracy-Widom
distribution it is usually expresses in terms of Painlevé-Transcedents but for
most pratical purposes its tails usually suffice:

fβ(x) ∼

{
e−

β
24

|x|3 when x → −∞
e−

2β
3
|x|3/2 when x → +∞
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Notice that the distribution is very asymmetric, its right tail is much heavier
than its left tail. This is a result of the logarithmic repulsion in the bulk
of the semi-circle. In order to push the maximum leftwards the logarithmic
repulsion force us to shift the entire gas left which is extremely costly. Hence
it’s much easier for the maximum to move rightwards where it only has to
fight against the overall harmonic potential.

4 Dyson log-gas interpretation

The stochastic model describing theN -eigenvalues of a matrix from the GOE
or GUE ensemble is sometimes referred to as the Dyson log-gas. Remember
the joint distribution of the eigenvalues:

P ({λi}) ∝
∏
i<j

|λi − λj |β exp

(
− 1

2σ2

N∑
i=1

λ2
i

)
.

Notice that we can re-write it as

P ({λi}) =
1

Z
exp

−β

 1

2σ̃2

N∑
i=1

λ2
i +

1

2

∑
i ̸=j

log |λi − λj |

 =
1

Z
exp(−βE({λi})) ,

where σ̃ = σ
√
β. This form should remind you results from statistical

physics...
Dyson tried to imagine what kind of gas could have an equilbrium distri-

bution described by the above joint probability density function. He finally
proved that the N -eigenvalues of a random matrix from the GOE or GUE
ensembles are equivalent to a gas of N one-dimensional particles on a line,
which undergo independent diffusive motions, repel each other with a log-
arithmic interaction and are confined around the origin with a harmonic
trap.
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