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Order Parameter for Spin-Glasses
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An order parameter for spin-glasses is defined in a clear physical way: It is a function
on the interval 0-1 and it is related to the probability distribution of the overlap of the
magnetization in different states of the system. It is shown to coincide with the order
parameter introduced by use of the broken replica-symmetry approach.
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The mean-field theory for spin-glasses has
been obtained in the framework of the replica
approach: In the phase where the replica sym-
metry is spontaneously broken the order param-
eter is a function Q(x) defined on the interval
0-1.' Although a similar order parameter has
been obtained in a dynamical approach, ' the phys-
ical meaning of this order parameter is unclear.
In this note I define a physically motivated order
parameter which I show to be equal to the order
parameter of the conventional replica approach.

We consider an Ising spin system, the total
number of spins (N) being sufficiently large so
that we stay near the thermodynamic limit. As
usual, the statistical expectation values are given
by

&O &
Q(,&

O(o') exp[ pH(o-)j

Q(,&
exp[- PH(o)]

O(a) and P(cr) being an observable and the Hamil-
tonian, respectively.

It is well known that in the presence of spontan-
eous magnetization Eq. (1) must be modified: It
predicts zero magnetization at zero magnetic
field for all temperatures. Equation (1) does not
describe a pure state (thermodynamic phase) of
the system but a mixture of different states. We
can decompose it as the sum of pure equilibrium
states':

For each of the pure states (labeled by o.) the
spontaneous magnetization may be different from
zero, while the connected correlation function
should go to zero at large distances (clustering) ~

In the normal ferromagnetic Ising model M is
aI.ways 1, unI. ess the magnetic field is zero and
the temperature sufficiently low. In this case
we have two pure states of positive and negative
magnetization. For spin-glasses the situation is

quite different: There is good evidence that (es-
pecially for the infinite-range model) even for a.
nonzero magnetic field there are many equilibri-
um states; the space of configurations consists
of many valleys separated by high mountains
(free-energy barriers) whose height goes to in-
finity in the infinite-volume limit. Explicit
Monte Carlo simuI. ations have shown that in the
infinite-range model the system will. not change
valleys for a time proportional to exp(N'~') 'Th.e
total number of valleys seems to increase like a
power of N, and so they do not contribute to the
zero-temperature entropy. If there is not a one
to one correspondence between the pure states of
the system at two different values of the magnetic
field, hysteresis effects are expected: By chang-
ing the magnetic field the system will. go to an
excited metastable state and decay to the true
equilibrium state-only after a very large time. '
In the same way the linear-response suscepti-
bility, which according to Fischer' is given by

is different from the total susceptibiIity

(4)

for which the contribution of jumping from one
state to another is included.

The existence of many states according to the
previous analysis is the main characteristic of
the gl.assy phase and we woul. d like to retain this
information in the order parameter.

We first notice that we can characterize the
state by the value of the magnetization in each
site:

m,. =&a, &„.
For each state we can construct the equivalent
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of the Edwards-Anderson order parameter':

q.A = Z&~;&.'/N. (6)

q~s= Q m, "m, ~/N,

P(q) = QG. gP~Pgs(q-q„g),

where P(q) is the probability distribution of the
q s. We can introduce the function x(q), where

x(q)=f „dqP(q), (8)

It is quite reasonabl. e that in the infinite-volume
limit al.l states will. have the same value of qE„..
Equation (6) defines an order parameter which
does not make reference to a particular pure
state. The serious disadvantage of qEA is that
it is different from zero also for a normal un-
frustrated ferromagnetic or antif erromagnetic
material, not only for a spin-glass.

Something more interesting can be obtained by
studying the overlap of the magnetizations be-
tween two different states:

If the function q(x) is constant, we have only
pure states which do not differ macroscopically.
If the function q(x) is not a constant, macroscop-
ically different pure states must exist; q(1) is
identif ied with the Edwards-Anderson order pa-
rameter, while q(0) is the minimum overlap be-
tween two states. The linear-response suscep-
tibil. ity (the reversible one) and the true suscep-
tibility (which should be presumably identified
with the field-cool, ed one) are given by

X = 0[1—q(1)], X =J3[1-f, q(x)dx]

We can thus characterize the glassy phase by a
nontrivial. dependence of q(x) on x.'

Having defined an order parameter having a
clear physical. meaning, we can now show that
this order parameter coincides with the one in-
troduced in the replica approach. " The expl. icit
decomposition of a state into its pure components
is not a simple operation; a fast way to obtain the
function q(x) consists in considering two real.
replicas of the same system" (v,.'; i = 1,N;
a = 1, 2) with the Hamiltonian

which is monotonic and an inverse function, which

!

is obviousl. y defined in the interval 0-1.
II, = Q H(v').

a=1

In the infinite-vol. ume l.imit we have that

N hl 1
(exp(y Qa', 'a /N)&2= g(y)= Q-Q P„P—a exp(yq~s)= f dx exp[yq(x)],

i =1 =1 8=1

where by (~ ~ &, we denote the statistical. expecta-
tion value with the Hamiltonian II,." Equation
(11) is rather interesting. It gives us the possi-
bility of computing q(x) using conventional tech-
niques, l.ike the Monte Carlo method.

In the replica approach one introduces an n
times replicated Hamiltonian and the order pa-
rameter is an n x n matrix, which is zero on
the diagonal. , defined as foll.ows'.

1 N

Q„= N Q(0, '0, '&, ahab, Q„=o.
i =1

(12)

In the presence of symmetry breaking in replica
space the matrix Q., has a nontrivial dependence
on the indices. The naive expression for g(y),

g(y) = exp(yQ, .), (13)

1 n n

g(y)=
( 1) Z Zen(yQ. ,).

a&b

(14)

must be modified" by summing over al. l the pos-
sible ways in which the symmetry may be broken
in replica space. We finally obtain

1 N

q(a„a,) = —g m,.(I,) m,.(i,).
i =1

Similar arguments, which will. be reported in de-
tail. elsewhere, ' tel. l us that'

(16)

»m q(a„a,)=q(0)~q(I „I,)= f, dxq(x). (17)
hP ~h1

In other words q(0) is the average overl. ap be-
tween two states" at different but simil. ar mag-
netic fields.

! In the approach of Ref. 1 the matrix Q„was
characterized by a function Q(x) defined on the
interval 0-1; if we go back to the original. defini-
tions, we easil. y f ind that for n - 0

g(y) = f, dx exp[yQ(x)]. (1s)

The functions Q(x) and q(x) are therefore identi-
fied, the physical interpretation of Q(x) now be-
ing clear.

We notice, en passant, that a rather simple ex-
pression for q(0) can be obtained if we consider
the function q(h» h, ) defined as

1947



VOLUME 50, NUMBER 24 PHYSICAL REVIEW LETTERS 13 JUNE 1983

It is now clear that the mysterious breaking of
the-replica symmetry is just the mathematical
transcription of the existence of infinitely many
pure thermodynamic states.

The definition of the order parameter q (x) does
not make reference to the fact that for spin-glass-
es the Hamiltonian II is random. It is unclear to
me if other amorphous materials (like real gl.ass-
es or hard spheres at high density) have many
different pure states when the volume goes to in-
finity so that the definition of the order parame-
ter presented here can be successfully extended.
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