SOLUTIONS TD9 Anderson on Bethe Lattice (2/2)

Problem 9: MOBILITY EDGE

IMAGINARY APPROXIMATION & DISTRIBUTIONAL EQUATIONS

Under all the approximation mentioned in the text, $\begin{aligned}
& F_a = V^2 \underset{b \in \partial a}{\cong} \frac{F_{b+\gamma}}{\epsilon_b^2 + (F_{b+\gamma})^2} \approx V^2 \underset{b \in \partial a}{\cong} \frac{F_{b+\gamma}}{\epsilon_b^2} \quad (*) \\
& because we assume F_{b \approx} \gamma \ll 1.
\end{aligned}$ Since, as remarked above, the F_D are all independent and identically distributed with density $P_P(F)$, the identity (*) becomes a self consistent equation for $P_P(F)$. $T_n particular$,

$$P_{\mathcal{P}}(\mathcal{P}) = \delta\left(\mathcal{P} - \mathcal{V}^{2} \underset{b \in \partial \alpha}{\leq} \frac{\Gamma_{b+\eta}}{\varepsilon_{b}^{2}}\right)$$

which explicitly reads: $P_{P}(P) = \int \frac{\kappa}{\Pi} d\epsilon_{b} p(\epsilon_{b}) \int \frac{\kappa}{\Pi} dr_{b} P_{p}(r_{b}) \delta\left(r_{b} - \sqrt{2} \sum_{b=1}^{K} \frac{r_{b+\eta}}{\epsilon_{b}^{2}}\right)$

2 THE STABILITY ANALYSIS

• If
$$r^2 \sim 1/\epsilon^2$$
, then
 $P(r) \sim \int d\epsilon \ p(\epsilon) \ S(r - 2/\epsilon^2) \sim \frac{p(\epsilon)}{2} |\epsilon|^3 \Big|_{\epsilon = r^{2-212}}$
 $\int_{1/r^{23/2}} P(r^{-2/2}) \xrightarrow{r^{2}/2} \frac{1}{r^{23/2}}$

• ASSUME $P(P) \sim P^{-\alpha}$ for $x \in (1, 3/2]$.

First, it holds in full generality:

$$\lim_{s\to\infty} \overline{\Phi}(s) = \lim_{s\to\infty} \int dP e^{-sP} P_P(P) = \int dP P_P(P) = 1$$
by vormalitation.
Consider $(\overline{\Phi}(s)-1) = \int dP P_P(P) (e^{-sP}-1)$
Assume P has some dimension [P].
Because the exponent has to be adimensional,
 $[s] = [P]^{-1}$.
Now, for [s]<1 the Integral is mostly
contabuted by $P \gg 1$, when
 $P_P(P) \sim P^{-\alpha}$. One has:
 $[\overline{\Phi}(s)-1] = [dP P_P(P)] = [P]^{1-\alpha} = [s]^{\alpha-1}$
Thus,
 $\overline{\Phi}(s) = 1 - A[s]^{\beta}$ $\beta = \alpha - 1$
 $A > 0$
(the sign is because $\overline{\Phi}(s) \leq 1$)

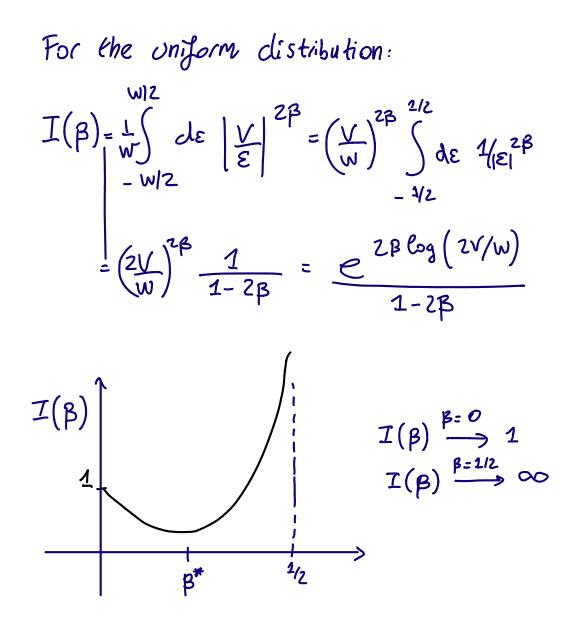
• The equation for
$$\underline{\Psi}(s)$$
 is:

$$\underline{\Psi}(s) = \left[\int d\epsilon \ p(\epsilon) \ e^{-\frac{s}{\epsilon^{2}}} \ \underline{\Psi}\left(\frac{s}{\epsilon^{2}}\right) \right]^{K}$$
which implies: $(s > 0)$
 $1 - A S^{B} = \left[\int d\epsilon \ p(\epsilon) \ e^{-\frac{s}{\epsilon^{2}}} \left(1 - A \left| \underline{V} \right|^{2\beta} S^{\beta} \right) \right]^{K}$
 $= \left[1 + O(s) - A S^{\beta} \int d\epsilon \ p(\epsilon) \ e^{-\frac{s}{\epsilon^{2}}} \left(\frac{1 - A \left| \underline{V} \right|^{2\beta}}{s} \right)^{2\beta} \right]^{K}$
 $= \left[1 + O(s) - A S^{\beta} \int d\epsilon \ p(\epsilon) \ e^{-\frac{s}{\epsilon^{2}}} \right]^{K}$

The two sides match provided that] B:

$$\int d\varepsilon \ p(\varepsilon) \left(\frac{V}{|\varepsilon|}\right)^{2\beta} = \frac{2}{K}.$$

3 CRITICAL DISORDER



 $I'(\beta) = 2 \log\left(\frac{2V}{W}\right) I(\beta) + \frac{2 \cdot I(\beta)}{1 - 2\beta} = 2I(\beta) \left[\log\left(\frac{2V}{W}\right) + \frac{1}{1 - 2\beta}\right]$ This vanishes when $\beta = \beta^* = \left(\frac{1}{\log\left(\frac{2V}{W}\right)} + \frac{1}{2}\right)$

And: $I(P^{*}) = \left[e^{\log\left(\frac{2V}{W}\right) + 1}\right] \left(-\log\left(\frac{2V}{W}\right)\right) = \frac{2Ve}{W} \log\left(\frac{W}{2V}\right)$

When W decreases,
$$I(\beta^*)$$
 increases: eventually,
for W small enough it will reach 1/k
(where k=2), & localization becomes unstable
In particular, this happens when:
 $\frac{2Ve}{We} \log(\frac{We}{2V}) = \frac{1}{K} \implies We = K \ 2Ve \ \log(\frac{We}{2V})$
Iterating and assuming $K > 2$
 $(\frac{We}{2V} = K \ 2 \ e \ \log(K)$.

The critical disorder increases with the connectivity K of the graph: when K is larger, there are more "directions" along which the particle can move, and one needs a stronger disorder to localize it. Increasing K is like increasing dimensionality: localization becomes more difficult, i.e. it requires a stronger disorder.