SOLUTIONS TD
Landscapes \& Kac-Rice (1/2)

Problem 5: The KR Meted \& The Complexity

THE KAC-RICE FORMULA

One can write

$$
M=\int_{a}^{b} d x \delta\left(x-g^{-2}(0)\right)
$$

Using the formula of change of variables of $\delta($.$) ,$

$$
\delta(y-F(x))=\frac{1}{\left|F^{\prime}(x)\right|} \delta\left(x-F^{-1}(y)\right)
$$

Jacobian
we have $N=\int_{a}^{b} d x \delta(f(x))\left|g^{\prime}(x)\right|$ and the formula is obtained taking the average.
Now, we want to count the number of points $\vec{\sigma} \in S_{N}$
such that $f(x) \equiv \nabla_{\perp} E(\vec{G})=0$. Since this function is a vector, its derivative has to be replaced by a matrix, the Hessian: the modulus is replaced by the absolve value of the determinant.
Therefore, the Kac-Rice formula counting the total number of stationary points is:

$$
\bar{X}=\int_{S_{N}} d \vec{\sigma} \overline{\delta\left(\nabla_{+} E(\vec{\sigma})\right)\left(\operatorname{det} \nabla_{\perp}^{2} E(\bar{\sigma})\right)}
$$

To count only those having a given value of energy density, one adds the constraint: $\delta(E(\vec{\sigma})-N \varepsilon)$.

12 statistical rotational invariance
The correlations read: $\quad \overline{E(\vec{\sigma}) E\left(\vec{\sigma}^{\prime}\right)}=N\left(\frac{\vec{\sigma} \cdot \vec{\sigma}^{\prime}}{N}\right)^{p}$ Given two configurations on the sphere, the correlation between the corresponcling energies depends only on the overlap between the configurations
 The overlap $q=\vec{\sigma} \cdot \vec{\sigma}^{\prime} / N$ is rotational invariant, and so are the correlations.

The Kac-Rice formula reads:

$$
\overline{N(\varepsilon)}=\int_{\delta_{N}} d \vec{\sigma} \quad P_{\varepsilon}(\vec{\sigma})
$$

The fact that the correlations, and thus the statistics of $E(\vec{\sigma})$, is rotational invariant implies that $p_{e}(\vec{\sigma})$ does not depend on the particular configuration $\vec{\sigma}$, but it is the same for all $\vec{\sigma}$. We fix one value for the vector, $1=(1, \ldots, 1)$, and get:

$$
\overline{N(\varepsilon)}=\int_{S_{N}} d \vec{\sigma} p_{c}(\vec{\sigma})=p_{c}(\vec{I}) \int_{S_{c}} d \vec{\sigma}=p_{c}(\vec{\sigma}) \underbrace{(2 \pi e)^{W / 2}}_{\text {volume of sphere }}
$$

(3) Gaussianity \& correlations

- The quantity $E(\overrightarrow{1})=\sum_{i_{1}<\ldots<i_{p}} J_{i n} . . i_{i}$ is a sum of independent Gaussian variables, and thus it is a gaussian variable with zero mean and: $\overline{(E(\bar{I}))^{2}}=N$
Its clistribution is $\frac{d E}{\sqrt{2 \pi N}} e^{-E^{2} / 2 N}$; in terms $g \varepsilon \in E / N$, this is $\sqrt{\frac{N}{2 \pi}} d \varepsilon e^{-\frac{N \varepsilon}{2}} 2$
- The vectors $\nabla_{\perp} E(\vec{I})$ are obtained subtracting to $\nabla \in(\vec{i})$ the component parallel to $\overrightarrow{1}$: one remains with ($N-1$) components that are gaussian, with covariances:
$\overline{\left(\nabla_{1} E\right)_{\alpha}\left(\nabla_{\perp} E\right)_{\beta}}=P \delta_{\alpha \beta} \quad$ and with zero average.
The probability density is:

$$
\Phi\left(\nabla_{\perp} E\right)=\frac{1}{(2 \pi p) \frac{N-1}{2}} \prod_{\alpha=1}^{N-1} e^{-\frac{\left(\nabla_{\perp} E_{\alpha}^{2}\right.}{2 P}}
$$

which computed at $\nabla_{\perp} E=0$ gives $P(\overrightarrow{0})=\left(\frac{1}{2 \pi P}\right)^{\frac{N-1}{2}}$

- Since $\nabla_{\perp} E(\overrightarrow{1})$ is independent of $E(\overrightarrow{1}), \nabla_{\perp}^{2} E(\overrightarrow{1})$, we have

$$
\begin{aligned}
& \left|\operatorname{det} \nabla_{\perp}^{2} E(\overrightarrow{1})\right| \cdot \delta\left(\nabla_{\perp} E(\overrightarrow{1})\right) \cdot \delta\left(E(\overrightarrow{1})-N_{\varepsilon}\right)= \\
& =\overline{\left|\operatorname{det} \nabla_{\perp}^{2} E(\overrightarrow{1})\right| \delta\left(E(\overrightarrow{1})-N_{\varepsilon}\right)} \cdot \overline{\delta\left(\nabla_{\perp} E(\overrightarrow{1})\right)} \\
& =\overline{\left|\operatorname{det} \nabla_{\perp}^{2} E(\overrightarrow{1})\right| \delta\left(E(\overrightarrow{1})-N_{\varepsilon}\right)} \cdot \mathbb{P}\left(\nabla_{\perp} E(\overrightarrow{1})=0\right) \\
& =\overline{\left|\operatorname{det} \nabla_{\perp}^{2} E(\overrightarrow{1})\right| \delta\left(E(\overrightarrow{1})-N_{\varepsilon}\right)} \cdot\left(\frac{1}{2 \pi P}\right)^{\frac{N-1}{2}}
\end{aligned}
$$

- Finally, the average of the determinant can be written as a conditional average, using the general relation:

$$
\begin{aligned}
\overline{X \cdot \delta(Y-y)} & =\int d x d y^{P} \underbrace{P\left(x, y^{\prime}\right)}_{P\left(x \mid y^{\prime}\right) p\left(y^{\prime}\right)} \cdot x \cdot \delta\left(y^{\prime}-y\right)=\left(\int d x P(x \mid y) \cdot x\right) \cdot p(y) \\
& =\overline{X(Y=y)} \mathbb{P}(Y=y)
\end{aligned}
$$

\uparrow conditions average
Therefore:

$$
\overline{\left|\operatorname{det} \nabla_{\perp}^{2} E(\overrightarrow{1})\right| \delta\left(E(\overrightarrow{1})-N_{\varepsilon}\right)}=\overline{\left|\operatorname{det} \nabla_{\perp}^{2} E(\overrightarrow{1})\right| \mid E(\overrightarrow{1})=N \varepsilon} \cdot \mathbb{P}\left(E=N_{\varepsilon}\right)
$$

$\tau_{\text {conclitional average }}$
Using the fact that the conclitional law of the Hessian matrix $\nabla_{\perp}^{2} E(\overrightarrow{1})$ is the same as matrices (M-pı1), where M is symmetric with Gaussian entries, we have that this term reduces to:

$$
\overline{\left|\operatorname{det} \nabla_{\perp}^{2} E(\overrightarrow{1})\right| \delta(E(\overrightarrow{1})-N \varepsilon)}=\overline{|\operatorname{det}(M-p \varepsilon \mathbb{1})|} \cdot \sqrt{\frac{N}{2 \pi}} e^{-\frac{N \varepsilon^{2}}{2}}
$$

Combining everything:

$$
\begin{aligned}
\overline{N(\varepsilon)} & \left.=(2 \pi e)^{N / 2}\left(\frac{1}{2 \pi p}\right)^{\frac{N-1}{2}} \sqrt{\frac{N}{2 \pi}} e^{-\frac{N \varepsilon^{2}}{2}} \overline{\mid \operatorname{det}(M-p \varepsilon \mathbb{1}}\right)\left.\right|^{M} \\
& =e^{\frac{N}{2} \log \left(\frac{e}{p}\right)-\frac{N \varepsilon^{2}}{2}+\log \overline{|\operatorname{det}(M-p \varepsilon \mathbb{1})|}+o(N)},
\end{aligned}
$$

where the average of the determinant is over the ensemble of matrices M that are symmetric, and have independent random entries $M_{\alpha \beta}$ with $\alpha \leq \beta$, with aussian statistics.

