T-I-1: Difference between revisions
Line 62: | Line 62: | ||
</center> | </center> | ||
in all point <math> z = x + i y \in \Omega</math>. Similarly to conformal maps, harmonic functions in two dimensions, are closely related to holomorphic functions. | in all point <math> z = x + i y \in \Omega</math>. Similarly to conformal maps, harmonic functions in two dimensions, are closely related to holomorphic functions. | ||
* Let us consider <math>g: \Omega \to \mathbb{C} </math> a holomorphic function. Show that <math>g, \varphi = \mathrm{Re}\, g, \psi = | |||
\mathrm{Im}\, g </math> are harmonic functions. | |||
\bigskip | |||
\noindent B. Soit $\varphi$ une fonction harmonique à valeurs | |||
\emph{réelles} définie sur un ouvert $\Omega \subset \mathbb{C}$ | |||
$\emph{simplement connexe}$. Montrez qu'il existe $g: \Omega \to | |||
\mathbb{C}$ holomorphe telle que $\varphi = \mathrm{Re}\, g$. La | |||
fonction $\psi = \mathrm{Im}\, g$ est appelée \emph{conjuguée | |||
harmonique} de $\varphi$. (Indication: le gradient de $\psi$ est | |||
connu.) Quelle pathologie peut-on avoir si $\Omega$ n'est pas | |||
simplement connexe? | |||
\bigskip | |||
\noindent C. Interprétation géométrique: montrez que les lignes de | |||
courant de $\vec{\nabla} \varphi$ sont les lignes de niveau de | |||
$\psi$. |
Revision as of 16:59, 14 October 2011
Analytical functions: conformal map and applications to hydrodynamics
This homework deals with the application of conformal maps to the study of two-dimensional hydrodynamics. A conformal map is a geometrical transformation which preserves all (oriented) crossing angles between lines. In dimension a conformal map is necessarily composed from the following limited number of transformations: translations, rotations, homothetic transformation and special conformal transformation (which is the composition of a reflection and an inversion in a sphere). However in two dimensions, , the space of conformal mappings is much larger and one can show that, given an open set , any holomorphic function such that , defines a conformal map from to . The aim of this HW is to exploit this property to study some hydrodynamic flows in two spatial dimensions.
Joukovski's transformation
The Joukovski's transformation is defined by the following application
- Compute and deduce from it the maximal ensemble on which is a conformal map. Show that is always surjective. Under which condition on the set the application on is surjective ? Give some examples of such (maximal) ensembles.
- Give the image by of the following sub-sets: (a) the half-line passing through the origin and making an angle with the -axis, (b) the circle centered at the origin of radius (analyse in particular the case ). What is the image, by , of the outside of the unit circle .
Hint: it might be useful to use polar coordinates, writing .
- Get a better idea of this Joukowski's transformation using the following code in Mathematica:
Jouk[z_] := z + 1/z
Jouk[1 - R Sin[\[Alpha]] + R Cos[u] +
I (R Cos[\[Alpha]] + R Sin[u])];
ParametricPlot[{Re[%],
Im[%]} /. {R -> 1.15, \[Alpha] -> 1.3}, {u, 0, 2 \[Pi]},
PlotRange -> {{-3, 3}, {-1, 1}}, AspectRatio -> 1/3]
- Study the conformal map in the vicinity of : we consider a "smooth" curve passing through , with a well defined tangent. Show that the image of exhibits a cusp in . In this purpose, we parametrize this curve by with and . Write then the Taylor expansion of in up to first order and the expansion of close to up to second order.
Harmonic functions
We recall that a function or ( being an open set of ) is called a "harmonic function" if satisfies the Laplace equation
in all point . Similarly to conformal maps, harmonic functions in two dimensions, are closely related to holomorphic functions.
- Let us consider a holomorphic function. Show that are harmonic functions.
\bigskip \noindent B. Soit $\varphi$ une fonction harmonique à valeurs \emph{réelles} définie sur un ouvert $\Omega \subset \mathbb{C}$ $\emph{simplement connexe}$. Montrez qu'il existe $g: \Omega \to \mathbb{C}$ holomorphe telle que $\varphi = \mathrm{Re}\, g$. La fonction $\psi = \mathrm{Im}\, g$ est appelée \emph{conjuguée
harmonique} de $\varphi$. (Indication: le gradient de $\psi$ est
connu.) Quelle pathologie peut-on avoir si $\Omega$ n'est pas simplement connexe?
\bigskip \noindent C. Interprétation géométrique: montrez que les lignes de courant de $\vec{\nabla} \varphi$ sont les lignes de niveau de $\psi$.