T-I-1: Difference between revisions

From ESPCI Wiki
Jump to navigation Jump to search
No edit summary
Line 89: Line 89:
<center><math>g(z)=V_0(z+\frac{1}{z}) \;.</math></center>
<center><math>g(z)=V_0(z+\frac{1}{z}) \;.</math></center>
* Compute the velocity along the real and the imaginary axis. Draw the streamlines (<math>\psi(z)=\text{const.}</math>) of the flow.
* Compute the velocity along the real and the imaginary axis. Draw the streamlines (<math>\psi(z)=\text{const.}</math>) of the flow.
ContourPlot[Im[(x + I y) + 1/(x + I y)], {x, -3, 3}, {y, -3, 3}, BoundaryStyle -> Red,  RegionFunction -> Function[{x, y}, x^2 + y^2 > 1], Contours -> 100]
* Explain (without calculation) how you can use the Joukovski's transformation to study the flow if the circle is replaced by the airfoil.
* Explain (without calculation) how you can use the Joukovski's transformation to study the flow if the circle is replaced by the airfoil.

Revision as of 10:05, 26 October 2011


Analytical functions: conformal map and applications to hydrodynamics

This homework deals with the application of conformal maps to the study of two-dimensional hydrodynamics. A conformal map is a geometrical transformation which preserves all (oriented) crossing angles between lines. In dimension a conformal map is necessarily composed from the following limited number of transformations: translations, rotations, homothetic transformation and special conformal transformation (which is the composition of a reflection and an inversion in a sphere). However in two dimensions, , the space of conformal mappings is much larger and one can show that, given an open set , any holomorphic function such that , defines a conformal map from to . The aim of this homework is to exploit this property to study some hydrodynamic flows in two spatial dimensions.

Joukovski's transformation

The Joukovski's transformation is defined by the following application

  • Compute and deduce from it the maximal ensemble on which Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle J} is a conformal map. Show that Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle J } is always surjective. Under which condition on the set the application Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle J} on Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Omega} is injective ? Give some examples of such (maximal) set .
  • Give the image by Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle J} of the following sub-sets: (a) the half-line passing through the origin Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle O} and making an angle with the Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x} -axis, (b) the circle centered at the origin of radius Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle R} (analyze in particular the case ). What is the image, by Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle J} , of the outside of the unit circle Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |z| > 1} .

Hint: you will find useful to write the Cartesian coodinates of in terms of the polar coordinates of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z} writing Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z = r e^{i \theta}} .

Get a better idea of this Joukowski's transformation using the following code in Mathematica:

- for the half-line passing through the origin:

 Jouk[z_] := z + 1/z
 Jouk[R Cos[u] + I  R Sin[u]];
 ParametricPlot[{{Re[%], Im[%]} /. {u -> 0.5}, {R Cos[u], R Sin[u]} /. {u -> 0.5}}, {R, .01, 10}]

- for the circle centered at the origin of radius :

 Jouk[R Cos[u] + I  R Sin[u]];
 ParametricPlot[{{Re[%], Im[%]} /. {R -> 0.79}, {R Cos[u], R Sin[u]} /. {R -> 0.79}}, {u, 0, 2 \[Pi]}, 
 PlotRange -> {{-3, 3}, {-1.5, 1.5}}]


  • Study the conformal map Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle J} in the vicinity of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z = 1} : we consider a "smooth" curve passing through Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z=1} , with a well defined tangent. Show that the image of exhibits a cusp in Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle J(1)} . In this purpose, we parametrize this curve Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \gamma} by with Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z(0)=1} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z'(0) \neq 0} . Write then the Taylor expansion of in Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t=0} up to first order and the expansion of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle J} close to up to second order.


Joukowski showed that the image of a circle passing through Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z=1} and containing the point Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z=-1} is mapped onto a curve shaped like the cross section of an airplane wing. We call this curve the Joukowski airfoil.

  • Convince yourself that the parametric curve

identifies a circle of radius Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle R} , passing through Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z=1} . being the angle between the real axis and the tangent at Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z=1} . You can now visualize the Joukowski airfoil using the following code:

Jouk[z_] := z + 1/z
Jouk[1 - R Sin[\[Alpha]] + R Cos[u] +   I (R Cos[\[Alpha]] + R Sin[u])];
ParametricPlot[{{Re[%], Im[%]} /. {R -> 1.15, \[Alpha] -> 1.3}, {{1 - R Sin[\[Alpha]] + R Cos[u]}, {R Cos[\[Alpha]] + R Sin[u]}} /. {R -> 1.15, \[Alpha] -> 1.3}}, {u, 0, 2 \[Pi]}]

Harmonic functions and hydrodynamics in the plane

We recall that a function Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \varphi: \Omega \to \mathbb{R}} or Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbb{C}} (Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Omega} being an open set of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbb{C} } ) is called a "harmonic function" if it satisfies the Laplace equation

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Delta \varphi = 0 \qquad \text{where} \qquad \Delta \varphi \equiv \frac{\partial^2 \varphi}{\partial x^2}+\frac{\partial^2 \varphi}{\partial y^2} \;, }

in all point Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z = x + i y \in \Omega} . Similarly to conformal maps, harmonic functions in two dimensions, are closely related to holomorphic functions.

  • Let us consider Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle g: \Omega \to \mathbb{C} } a holomorphic function. Show that Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle g, \varphi = \mathrm{Re}\, g } and are harmonic functions.
  • Geometric interpration of and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \psi } : show that the streamlines of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \nabla \varphi } are the level curves of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \psi } .
  • Show that, if Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \varphi: \Omega \to \mathbb{R} } is a harmonic function and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f: \Omega' \to \Omega } a conformal map, then Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Phi = \varphi \circ f } is also a harmonic function.

We now consider the irrotational flow of a non-viscous and incompressible fluid in some region of the plane. We denote by Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \vec{v}=(v_x,v_y) } its velocity field.

  • Show that Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \vec{v}=(v_x,v_y) } is the gradient of a scalar potential Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \varphi(x,y)} which satisfies Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Delta \varphi=0} .
  • Show that you can construct Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \psi(x,y)} such that Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle g=\varphi +i \psi} is holomorphic and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle v_x+i v_y= \overline{g'(z)}} . Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle g(z)} is the complex potential associated to the 2-dimensional fluid flow.

Back to the Joukovski's transformation

  • Consider a constant and uniform flow, parallel to the real axis and with velocity Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle V_0} . Show that the complex potential writes Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle g_0(z)=V_0 z} .
  • Consider a fluid in presence of an obstacle. The obstacle is a circle with Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle R=1} . Far from the circle the velocity is Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle V_0} . Use the Joukovski's transformation to show that the complex potential writes
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle g(z)=V_0(z+\frac{1}{z}) \;.}
  • Compute the velocity along the real and the imaginary axis. Draw the streamlines (Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \psi(z)=\text{const.}} ) of the flow.
ContourPlot[Im[(x + I y) + 1/(x + I y)], {x, -3, 3}, {y, -3, 3}, BoundaryStyle -> Red,  RegionFunction -> Function[{x, y}, x^2 + y^2 > 1], Contours -> 100]
  • Explain (without calculation) how you can use the Joukovski's transformation to study the flow if the circle is replaced by the airfoil.