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• Introduction: What are records, and why do we care?

• Record statistics beyond i.i.d. RV’s: The linear drift model

• Application: Record-breaking temperatures and global warming

• Correlations between record events
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Records in popular culture

9.11.2006:
1188 Parisians
kissing at La
Defense

http://www.guinnessworldre
ords.
om/gwrday/fren
hkiss.aspx



Basic facts about records I

• A record is an entry in a sequence of random variables (RV’s) Xn which is
larger (upper record) or smaller (lower records) than all previous entries

• If the RV’s are independent and identically distributed (i.i.d.), the probability
for a record at time n is Pn = 1/n by symmetry

• This result is universal, i.e. independent of the underlying distribution
(provided it is continuous)



Basic facts about records II

N. Glick, Am. Math. Mon. 85, 2 (1978)

• The expected number of records up to time n is

〈Rn〉 =
n

∑
k=1

1
k

= ln(n)+ γ +O(1/n)

where γ ≈ 0.5772156649.... is the Euler-Mascheroni constant

• Record events are independent: The sequence of records is a Bernoulli
process with success probability Pn, which converges to a Poisson process
in logarithmic time for large n

• In particular, the variance of the number of records is

〈(Rn−〈Rn〉)2〉 =
n

∑
k=1

(

1
k
− 1

k2

)

= ln(n)+ γ − π2

6
+O(1/n)



Beyond the i.i.d. model



Records in growing populations

M.C.K. Yang, J. Appl. Prob. 12, 148 (1975)

• Motivation: Olympic records occur at an essentially constant (non-
decreasing) rate

• Model: At each time n a new “generation” of Nn i.i.d. RV’s becomes
available simultaneously. By symmetry, the probability of a new record at
time n is then

Pn =
Nn

∑n
k=1 Nk

• For an exponentially growing population, Nn = an, this yields

Pn =
an(a−1)

a(an−1)
→ a−1

a
for n → ∞.

• The growth of the world population is insufficient to explain the occurrence
rate of Olympic records under this model.



Records from broadening distributions

JK, JSTAT (2007) P07001

• Let Xn be drawn from pn(x) = n−α f (x/nα) with α > 0

• Asymptotic growth of the number of records depends on the universality
class of f in the sense of extreme value statistics.

Fréchet class: f (x) ∼ x−(µ+1) ⇒ 〈Rn〉 ≈ (1+αµ) ln(n)

Gumbel class: f (x) ∼ exp[−xβ ] ⇒ 〈Rn〉 ∼ α ln2(n)

Weibull class: f (x) ∼ (xmax− x)δ−1,δ > 0 ⇒ 〈Rn〉 ∼ (αδn)1/(δ+1)

• Effect of broadening is stronger for fast decaying tails

• Broadening generically induces correlations between record events
(see later)



Records of random walks

S.N. Majumdar & R.M. Ziff, PRL 101, 050601 (2008)

• Let Xn be an unbiased random walk:

Xn =
n

∑
k=1

ηk

with i.i.d. RV’s ηk drawn from a symmetric, continuous distribution φ(η)

• The probability of having m records in n steps is given by

P(m,n) =

(

2n−m+1
n

)

2−2n+m−1 → 1√
πn

exp[−m2/4n]

• Mean number of records: 〈Rn〉 ≈
√

4n/π

• This result does not require φ(η) to have finite variance

See also poster by Gregor Wergen!



The linear drift model

R. Ballerini & S. Resnick (1985); J. Franke, G. Wergen, JK, JSTAT (2010) P10013

• Let Xn = Yn + vn with i.i.d. RV’s Yn and a drift speed v > 0

• Let Yn have probability density p(y) and probability distribution function
q(x) =

∫ x dy p(y). Then

Pn(v) =
∫

dxn p(xn − vn)
n−1

∏
k=1

q(xn− vk) =
∫

dx p(x)
n−1

∏
k=1

q(x+ vk)

• Limiting record rate
lim
n→∞

Pn(v) ≡ P∞(v) > 0

for v > 0 provided p(x) has a finite first moment.

• Model also appears in the context of elastic manifolds in random media (Le
Doussal & Wiese, PRE 2009) and evolutionary pathways in random fitness
landscapes (Franke et al., PLoS Comp. Biol., in press)



Simulation of the record rate for Gaussian RV’s

Crossover time scale n∗(v) → ∞ for v → 0



An exactly solvable case

• For the Gumbel distribution q(x) = exp[−e−x/b]

n−1

∏
k=1

q(x− vk) = exp[−e−x/b
n−1

∑
k=1

e−vk/b] = q(x)αn with αn =
n−1

∑
k=1

(e−v/b)k

⇒ Pn(v) =
∫ 1

0
dqqαn =

1
αn +1

=
1− e−v/b

1− e−nv/b

• Limiting record rate for v > 0 is P∞(v) = 1− e−v/b

• For v < 0 the record rate decays exponentially with n and the expected
number of records remains finite.

• Conjecture : The expected number of records is finite for v < 0 for any
distribution with a finite mean

• Gumbel distribution is the only case in which the stochastic independence
of record events of the i.i.d. model is preserved.



Ordering probability

J. Franke, G. Wergen, JK, JSTAT (2010) P10013

• What is the probability ΠN that all N events are upper records, i.e. that

X1 < X2 < ... < XN?

• For i.i.d. RV’s we have ΠN = ∏N
k=1

1
k = 1

N!

• For the linear drift model with Gumbel-distributed i.i.d. part one finds

ΠN =
(1− e−θ)N

∏N
k=1(1− e−θk)

≈
√

θ
2π

eπ2/6θ (1− e−θ)N for N → ∞

with θ = v/b

• Conjecture : The ordering probability ΠN decays exponentially (rather than
factorially) with N for v > 0 and any distribution with a finite mean



Application to global warming



The 2010 summer heat wave

http://www.spiegel.de/



The 2010 summer heat wave

http://
limateprogress.org/2010/07/05/heat-wave-global-warming/



Temperature records in the USA

http://www.u
ar.edu/news/releases/2009/maxmin.jsp

based on G.A. Meehl et al., Geophys. Res. Lett. 36 (2009) L23701



Record-breaking temperatures and global warming

R.E. Benestad (2003); S. Redner & M.R. Petersen (2006)

• Question: Does global warming significantly increase the occurrence of
record-breaking high daily temperatures?

• Model: The temperature on a given calendar day of the year is an
independent Gaussian RV with constant standard deviation σ and a mean
that increases at speed v

• Typical values: v ≈ 0.03oC/yr, σ ≈ 3.5oC ⇒ v/σ ≪ 1



Expansion for small drift speed

J. Franke, G. Wergen, JK, JSTAT (2010) P10013

• We want to compute the record rate Pn(v) =
∫

dx p(x)∏n−1
k=1 q(x+ vk)

• To leading order in v we have q(x+ vk) ≈ q(x)+ vkp(x)

⇒ Pn ≈
∫

dx p(x)q(x)n−1 +
vn(n−1)

2

∫

dx p(x)2q(x)n−2 =
1
n

+ vIn

with In = n(n−1)
2

∫

dx p(x)2q(x)n−2

• Asymptotic behavior of In depends on the universality class of p:

Fréchet class: p(x) ∼ x−(µ+1) ⇒ In ∼ n−1/µ → 0

Weibull class: p(x) ∼ (xmax− x)δ−1,δ > 1
2 ⇒ In ∼ n1/δ → ∞

Gumbel class: p(x) ∼ e−xβ ⇒ In ∼ (lnn)
1− 1

β

• Conjecture : Expansion is singular for Weibull distributions with δ < 1
2



Comparison to simulations: Fréchet class
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• In the Gaussian case In can be evaluated in closed form only for n = 2,3

• A saddle point approximation for large n yields the result

Pn(v) ≈
1
n

+
v
σ

(2π)3/2

e2

√

ln(n2/8π)



Analysis of temperature records

G. Wergen, JK, EPL 92 30008 (2010)



Maximum temperature on June 16 in Parc Montsouris
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Expected number of records in a stationary climate is 5.3±1.9



Data sets for daily temperatures

European data

• 43 stations over 100 year period 1906-2005

• 187 stations over 30 year period 1976-2005

• 30 year data: Constant warming rate v ≈ 0.047±0.003oC/yr,
standard deviation σ ≈ 3.4±0.3oC ⇒ v/σ ≈ 0.014

American data

• 10 stations over 125 year period 1881-2005

• 207 stations over 30 year period 1976-2005

• Continental climate implies larger variability:
σ = 4.9±0.1oC, v = 0.025±0.002oC/yr ⇒ v/σ ≈ 0.005

• Significant effect of rounding to integer degrees Fahrenheit



European data: Mean daily maximum temperature

Full line: Sliding 3-year average



European data: No trend in the standard deviation



European data: Temperature fluctuations are Gaussian



Record frequency in Europe: 1976-2005

• Expected number of records in stationary climate: 365
30 ≈ 12

• Observed record rate is increased by about 40 % ⇒ 5 additional records



Mean record number: 1976-2005



Record frequency in the US: 1881-2005

Dashed line: Pn = (1−d/σ)/n with discretization unit d = 1oF = (5/9)oC



Re-analysis data: Record maps

number of records 1957-2000 normalized warming rate v/σ

Expected record number in a stationary climate is 4.36



Re-analysis data: Seasonal variation



A record-based test of changing temperature variability

A. Anderson, A. Kostinski, J. Appl. Meteor. Climat. 49, 1681 (2010)

• For a given temperature time series, consider the quantity

R ≡ RH
>−RH

< +RL
>−RL

<

where RH,L
> is the number of high (H) and low (L) records of the forward

time series and RH,L
< the corresponding numbers backward in time

• R is insensitive to drift, because it vanishes to leading order in the drift
speed, but can pick up small changes in the variance of the time series

• Based on a large worldwide data set of monthly temperatures, Anderson &
Kostinski argue that 〈R〉 < 0, indicating decreasing temperature variability.



A record-based test of changing temperature variability

A. Anderson, A. Kostinski, J. Appl. Meteor. Climat. 49, 1681 (2010)

〈R〉



Correlations between record events



Records from broadening distributions

JK, JSTAT (2007) P07001

• RV’s Xn drawn from pn(x) = n−α f (x/nα) with α > 0

• Simulations indicate sub-Poissonian fluctuations in the number of records,
indicating that record events repel each other

Example: Uniform distribution



Record correlations in the linear drift model

G. Wergen, J. Franke, JK, arXiv:1105:3915

• Consider the quantity

lN,N−1(v) =
PN,N−1

PNPN−1
with PN,N−1 = Prob[XN record and XN−1 record]

• lN,N−1(0) = 1 and lN,N−1(v) ≡ 1 for Gumbel-distributed i.i.d part

• limN→∞ lN,N−1(v) exists for v > 0 but not necessarily for v < 0

• Small v expansion yields lN,N−1(c) ≈ 1+ vJN(v) with

JN ≈−1
2

N4dIN

dN
−N3IN ≈ κ

2
N3IN

where κ is the extreme value index of p(x) ∼ (1+κx)−
κ+1

κ



Record correlations in the linear drift model
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For details see poster by Jasper Franke



Conclusions

• Records statistics as a paradigm of non-stationary dynamics
of rare events

• Linear drift model a simple yet rich generalization of record
statistics to non-i.i.d. RV’s

• Global warming affects the rate of record-breaking temperatures
in a moderate but significant way

• Record events in the linear drift model can be positively or
negatively correlated depending on the tail of the underlying
distribution


