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Multivariate linear correlations

Standard tool in risk management/portfolio optimisation:
the covariance matrix R;; = (r;7;)

Find the portfolio with maximum expected return for a
given risk or equivalently, minimum risk for a given return

(9)

In matrix notation:
R_lg
g/R-1g
where all gains are measured with respect to the risk-free
rate and o; = 1 (absorbed in g;).

w =0

More explicitely:
W X ZAal (Vo 8)Wa = g+Z(/\&1 —1) (Yo 8)¥Pa
(8 (8



Multivariate non-linear correlations

e Many situations in finance in fact require knowledge of
higher order correlations

— Gamma-risk of option portfolios: (rfr#) — (r7)(r%)

— Stress test of complex porfolios: correlations in extreme
market conditions

— Correlated default probabilities — Credit Derivatives (CDOs,
basket of CDSs)

“The Formula That Killed Wall Street” (Felix Salmon)



Different correlation coefficients

o Correlation coefficient: p;; = COV(ri,rj)/\/V(ri)V(rj)

e Correlation of squares or absolute values:

2y cov(ry,r?7) @ cov(|ril, |

T VEHVED T Vv

e [ail correlation:
1

UU _
i (p) = —
p

(Similar defs. for 744 UL LU

Prob. [7“7; > P;i(p) ﬂ T > 'P;é(p)}



Copulas

e Sklar's theorem: any multivariate distribution can be ‘fac-
torized” into

— its marginals P; — u; = P;(r;) are U|O0, 1]

— a ‘‘copula”, that describes the correlation structure be-

tween N UJ0, 1] standardized random variables: c(uq,uo, ..

e All correlations, linear and non linear, can be computed
from the copula and the marginals

e For bivariate distributions:

Cij(u,v) =P [P;(X;) <w and P j(X;) < v

UN)



Copulas — Examples

e Examples: (N = 2)

— The Gaussian copula: ri1,ro bivariate Gaussian — de-
fines the Gaussian copula cg(u,v|p)

— The Student copula: rq,r> bivariate Student with tail
v — defines the Student copula cg(u,v|p,v)

— Archimedean copulas: ¢(uw) : [0,1] — [0,1], ¢(1) = O,
qb_l decreasing, completely monotone
Ca(u,v) = ¢~ [¢(u) + ¢(v)]

Ex: Frank copulas, ¢(u) = In[e? — 1] — In[ef* — 1];
Gumbel copulas, ¢(u) = (= Inw)?, 6 < 1.



The Copula red-herring

e Sklar's theorem: a nearly empty shell —almost any c¢(uq, us, ...upn)
with required properties is allowed.

e [ he usual financial mathematics syndrom: choose a class
of copulas — sometimes absurd — with convenient mathe-
matical properties and brute force calibrate to data

e If something fits it can't be bad (?7) Statistical tests
are not enough — intuition & plausible interpretation are
required

e But he does not wear any clothes! — see related comments
by Thomas Mikosch



The Copula red-herring

e Example 1: why on earth choose the Gaussian copula to
describe correlation between (positive) default times??7?

e Example 2: Archimedean copulas: take two UJ0, 1] ran-
dom variables s,w. Set t = K 1(w) with K(t) = t —
o(t)/¢'(t).

u=¢ sp(®)];  v=9¢"1[A-35)e®)]; — 71,72

Financial interpretation 777

e Models should reflect some plausible underlying structure
or mechanism



Copulas 7 What copulas 7

e Aim of this work
— Develop intuition around copulas

— Identify empirical stylized facts about multivariate cor-
relations that copulas should reproduce

— Discuss ‘“‘self-copulas’” as a tool to study empirical tem-
poral dependences

— Propose an intuitively motivated, versatile model to
generate a wide class of non-linear correlations



Copulas

e Restricted information on copula: diagonal C(p,p) and
anti-diagonal C(p,1 — p). Note: C(3,3) is the probability
that both variables are simultaneously below their medians

e [ail dependence:

1-—-2 C
AU () = Pl-t g (p,p)7 otc.

e Relative difference with respect to independence or to

Gaussian:

C’(p,p)—pz_TUU ~LLeq_y_ C(p,p) — Cc(p,p)
p1-p | AT e p(1 —p)




Copulas

1
p
Clp,p) ..
1—p
C(p,1—1p)
0
0

TLU

TUU

TLu(p)

T (p)

7L (p)

TuL(P)

TLL

TUL



Student Copulas
e Intuition: ry = ogeq1, 1o = ger With:
— €12 bivariate Gaussian with correlation p
— o IS a common random volatility with distribution

P(o) = Ne_08/02/01+”

e The monovariate distributions of r; o are Student with a
power law tail exponent v (€ [3,5] for daily data)

e [ he multivariate Student is a model of correlated Gaussian
variables with a common random volatility:

T, = O€; Pij = COV(Gi, Ej)



Student Copulas

e In this model, all higher-order correlations can be expressed
in terms of p

e Explicit formulas: (fn = (62™)/{c™)?)

) — fo(14+2p%) -1 o = f1(1/1 — p? + parcsinp) — 1
3f2—-1 5f1—1 |

e [ he tail correlations = have a finite limit when p — O
because of the common volatility

e [ he central point of the copula:

11 1 1
C(=,—-) = —+ —arcsin
=315, p



Student Copulas
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Student Copulas

<
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p = 0.3 — Note: corrections are of order (1 —p)2/¥



Elliptic Copulas

e A straight-forward generalisation: elliptic copulas
r1 = oe€1, "> = oeo, P(o) arbitrary

e The above formulas remain valid for arbitrary P(o) in par-

ticular:

1 1
) =—+4+ —arcsinp

11
C(=, =
2 2 4 27

e The tail correlations = have a finite limit whenever P(o)
decays as a power-law

e A relevant example: the log-normal model o = oqet, & =
N(0,)?) — very similar to Student with v ~ A72 *

*Although the true asymptotic value of 7(p = 0) is zero.



Student Copulas and empirical data

e The empirical curves p%(p) or p(2)(p) cross the set of Stu-
dent predictions, as if “more Gaussian’” for small p's

e Same with tail correlation coefficients (+ some level of
assymetry)

° C(%,%) systematically different from Elliptic prediction

= 7 + 5= arcsinp — in particular C(3,3[p =0) > 2

e C(p,p)—Cea(p,p) incompatible with a Student model: con-
cave for p < 0.25 becoming convex for p > 0.25

e [0 be sure: Archimedean copulas are even worse !



Absolute correlation
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Tail correlation
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IMe Series
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Tail correlation
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Centre point vs p
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Diagonal
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Student Copulas: Conclusion

Student (or even elliptic) copulas are not sufficient to de-
scribe the multivariate distribution of stocks!

Obvious intuitive reason: one expects more than one volatil-
ity factor to affect stocks

How to describe an entangled correlation between returns
and volatilities?

In particular, any model such that r; = o;¢; with correlated
random o's leads to C'(3,3) = % for p = 0!



Constructing a realistic copula model

e How do we go about now (for stocks) 7
— a) stocks are sensitive to ‘“factors”

— b) factors are hierarchical, in the sense that the vol
of the market influences that of sectors, which in turn
influence that of more idiosyncratic factors

e Empirical fact: within a one-factor model,

r; = Bico + &

volatility of residuals increases with that of the market ¢g



“Entangled” volatilities
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Constructing a realistic copula model

e An entangled one-factor model

with & ~ N(0,s3), & ~ N(0,s%), 1ID,

e [ he volatility of the idiosyncratic factor is clearly affected
by that of the market mode

e Kurtosis of the market factor and of the idiosyncratic fac-
tor:

Ko = 452 [6453 B 1] ; Ky = A(a2s3+52) [ 4(a?s3+52) _ 4



Constructing a realistic copula model

e An interesting remark: take two stocks with opposite ex-
posure to the second factor

r4 = 0065080 =+ 0‘160450_'_&181

e Choose parameters such that volatilities are equal

2 2.2 2
00e®0 = g1e® 0141

such that cov(ry,r—) =0

e [ hen:
K1 — /io)

N
N
[Ny



A hierachical tree model

e Construct a tree such that the trunk is the market factor,
and each link is a factor with entangled vol.

e [ he return of stock 2 is constructed by following a path C;
along the tree from trunk to leaves

0= [ oy O @e@) 0| [ ata. e

zaqle[oaq]

e Parameters: Branching ratio of the tree b(q), volatility
function o(q), intrication function a(q, q’")



A hierachical tree model

0 qij




A hierachical tree model

e Calibration on data: work in progress...

e Find simple, systematic ways to calibrate such a huge
model = stability of R;;?7

e Preliminary simulation results for reasonable choices: the
model is able to reproduce all the empirical facts reported
above, including C(1/2,1/2) > 1/4 and the change of con-
cavity of

C(p,p) — Cg(p,p)
p(1 —p)

as p increases



Self-copulas

e One can also define the copula between a variable and
itself, lagged:

Cr(u,v) = P |Po(Xy) < u and P j(Xyqr) < v

e Example: log-normal copula
X = e¥tg

with correlations between ¢'s (linear), w's (vol) and wé
(leverage)

e In the limit of weak correlations:

Ci(u,v) —uv =~ pR(u,v) + aA(u,v) — B(u,v)



T hree corrections to independence

p, o, B



Empirical self copulas




Long range (multifractal) memory
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Self-copulas

e A direct application: GoF tests (Kolmogorov-Smirnov/Cramer-
von Mises) for dependent variables

e The relevant quantity is > ; (C¢(u,v) + C_¢(u,v) — 2uv)

e [ he test is dependent on the self-copula

e = Significant decrease of the effective number of indepen-
dent variables



Conclusion — Open problems

e GOF tests for two-dimensional copulas: max of “Brownian
sheets” (some progress with Rémy)

e Structural model: requires analytical progress (possible
thanks to the tree structure) and numerical simulations

e Extension to account for U/L asymmetry

e EXxtension to describe defaults and time to defaults — move
away from silly models and introduce some underlying
Structure



