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e < Xi(t) < - < Xo(t) < X(t)
lim PI‘Ob(Xl(t) — Xg(t),Xl(t) — X3(t)) ?
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The models

Branching Brownian Motion
» Particles diffuse

» They split at rate 1

Branching random walk
» At each step, points split into two

» The offspring are shifted by
uncorrelated random amounts

A\ >

e
Position
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Branching random walk
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Directed polymers

uncorrelated energy shifts
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The rightmost particle

Branching Brownian Motion

» Particles diffuse

((Ax)?) = 2dt

> They split at rate 1

Distribution of the rightmost particle

Qo(x, t) = Proba[Xi(t) < x] Qo(x,0) = < —1)

Qo(x, t + dt) = (1 — dt)(Qo(x + Ax)) + dt Qo(x, t)?
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0

Qo(x, t) = Proba[Xi(t) < x] Qo(x,0) = < —1)

Qo(x, t + dt) = (1 — dt)(Qo(x + Ax)) + dt Qo(x, t)?

Taking dt < 1 (and as ((Ax)?) = 2dt) one gets
The Fisher-KPP equation

Qo = 8 Qo — Qo+ Q’ o
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w)\(x7 t) — <)\[number of particles on the right of x at time t]>

Un(x, t+dt) = (1 — dt)(x(x + Ax)) + dt ¥a(x, t)?

(x, t) satisfies the FKPP equation

Dby = 2y — by + 12, with ¢ (x,0) = (x—l_l),
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1) gives the average positions of the rightmost particles
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Z A"(dnn1) = A(0) — A(N)

dnnt1 distance between the n-th and the n+ 1-th point




Position of the front Bramson 1978

Orby = 02y — by +10\2, with 1h\(x,0) = (l

For large t:

In(x, ) — F (x ot glog [ A()\))

Z )‘n<dn,n+1> - A(O) - A()‘)

All the properties of the tip can be obtained as delays




Position of the front Bramson 1978

Orby = 2y — by +10\2, with 1h\(x,0) = (7»

For large t:

Ua(x,t) — F (x — 2t — g log t — A(A))

D ANdnnr1) = A(0) — A(N)

For A — 1, A(A) ~ log(1 — A) + log(—log(1 — \))
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Asymptotics

’ For A~ 1, A(N) =7y —logTy + O(1) with 7, = —log(1 — )\)‘

Oethr = A+ =1y with 15 (x,0) = <2 l>,
0

» T, = time needed for 1\(—00, 0) to “reach” 0.

» 1 — ) < 1fort KTy,

» Naive answer A(\) ~ 27,

1 1

d =
< n,n+1>st n n |Og n

for large n.
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Results : average distances

(dopnt1)st = — — —— for large n.
n nlogn
0.503 0.224
0.502 +
0.223
0501 b (dy,)
0.500 | 0.222
0.499 0.221
0.498 +
0.220
0.497 +
0.496 L 0.219
0 11 11 0 L oL o1 1 0 L oL o1 1
200 100 65 50 200 100 65 50 200 100 65 50

Average distances as a function of 1/¢t. In the long time limit:
<d172> ~ 0.496 <d2,3> ~ 0.303 <d3,4> ~ 0.219
(das) ~0.172 (dsg) ~0.142 (dg7) ~0.121
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The rightmost particles of a Poisson process
Definition

> (x,x + dx) is occupied by a particle with probability p(x)dx

» no correlation between the occupations of disjoint intervals

For p(x) = e™ Distance between the n
_ _ and n+ 1 particle

Mean field spin glasses (valleys)

REM, GREM

Ruelle cascades <dn,n+1> = —
an
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Superposability

For large t, for the limiting measure of the distances

BBEM + BBM= BBM



Genealogies with and without selection

Asexual Reproduction

‘ Past




» One parent model
(asexual reproduction)

» Population of fixed size N

» Each individual i has n;
offspring (n; random)
(neutrality)

» One chooses N survivors
among these ny + ny + ...
offspring (neutrality)

Wright-Fisher model (1930-1931)
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Wright-Fisher model (1930-1931)

» One parent model

>

>

(asexual reproduction)
Population of fixed size N

Each individual has its
parent chosen at random
in the previous generation
(neutrality)




Coalescence times:
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Coalescence times:

Ages of the most recent common ancestors T,,., and T>
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Tmax and T, are non self-averaging quantities




Evolution of T, and T,

Tmax = age of the most recent common ancestor

T, = average over the population of T,

T ,T Serva 2005
maxs 2 Simon D. 2006
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Coalescence times:
Age T,  Kingman theory

T, = age of the most recent common ancestor
of p individuals chosen at random




MODELS OF EVOLUTION WITH SELECTION

8 .
» Population of size N T’ fitness
o . g+ 1
» Each individual has 2 offspring — oo »

at the next generation

> The fitness is transmitted up
to some small change due to
mutations

» The N right-most individuals
are selected



Branching random walk

Branching random walk + selection




QUESTIONS

For a population of fixed size N

» Ages of the most recent common ancestors

1 234

» Shape of the genealogical trees



Exponential model

» Population of size N
» Each individual has infinitely many offspring at the next

generation
» An individual at position x has an offspring in

(x +y,x +y + dy) with probability e™¥dy (Poisson process).
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Exponential model

» Population of size N
» Each individual has infinitely many offspring at the next

generation
» An individual at position x has an offspring in

(x +y,x +y + dy) with probability e™¥dy (Poisson process).

A

aneo-eo— 00—
» The N right-most individuals are selected
Brunet D. Mueller Munier 2006-2007

gfi -2 (T2) ~ log N
2
(Ta) 25 spin glass trees

(To) 18



Statistics of the trees

N3

spin—glass| neutral
3 1
4
0

spin-glass = mean-field spin glasses

Parisi 79-80
Mézard-Parisi-Sourlas-
Toulouse-Virasoro 84

... Bolthausen-Sznitman 98

neutral = Wright-Fisher model

spin—glass| neutral
1 2
3 3
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N
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Coalescence times: simulations N — 10°

T, = age of the most common
ancestor of p individuals chosen

at random

1 <Tp>
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Conditionning on the speed
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Conditionning on the speed

Brunet D. 2011
X; position of the

population at time ¢t
Weight the events by

e_ﬂXt
Then

(T3)
(T2)

_5+48
5 4+33

(Ta)
(T2)

100 + 2043 + 13332 + 2733
3 72+ 1423 +9082 + 1833




Conditionning on the

speed

Brunet D. 2011

exponential N = 100 |
% Prediction—

4 -3 -2 -1 0 1 2 3 4

B/~ (generic case) or 3 (exponential model)

X; position of the 1.35
population at time ¢t Lao |
Weight the events by 125 ¢
)0 |
. g 120
e % 1.15
Then 1.10
(Ts)| _5+4p 1.05
(T2) |z 4+38
(Ta)| 100 + 2043 + 13332 + 2733
(T2)|s 72+ 142849042 + 18°
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Coalescence rates

gp rate at which p branches coalesce into 1.

Gp/q>  for p>2

neutral 0
selection 1

p—1
o= Xt (p=2)! T(3+2)

r(3+p)




Fisher equation and branching random walk

The Fisher-KPP equation

de_ &
dt  dx?

+c—¢?

Fisher 1937
Kolmogorov Petrovsky Piscounov 1937

selection

Q(x, t) probability that the right-most
walker is at the right of x

dQ  d%Q

E—W‘FQ_Qz-FNOiSG




Traveling wave equation + noise

dc  d°c , 1
= — — t)v/c(l—c
Brunet D. 1997
c(x,t) ,
4 ! Brunet D. Mueller Munier
\ \ 2006
— —
X Mueller Mytnik Quastel
2008
w2 672 log log N 274
vy >~ 2 — >— + 3 Dy ~ -
log® N log™ N 3log” N




Cut-off approximation

Brunet Derrida 1997, 2001
Branching random walk + selection

dc  d%c 5 1
E—ﬁ+c—c —f—ﬁn(x,t) C(l—C)
c(x,t)
Replace the noise by
a cut-off
7 X
dc  d?c 1 if Ne>1

- = — 2 =
e + a(c)(c — ¢“)| where a(c) {0  Ne< 1




Conclusion

Tip of a branching random walk # Poisson process
Selection = Bolthausen-Sznitman coalescent

Conditionning on the speed interpolates between
Kingman and Bolthausen-Sznitman

Steady state measure for large N

Soluble case for the measure of the tip

Shape of the noisy KPP equation conditionned on
the speed
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