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Stochastic growth processes
KPZ equation as a model for a growing interface

Experiments on universal fluctuations of a growing interface: MYLLYS
et al. and TAKEUCHI & SANO

Exact solution of KPZ equation: Work of AMIR-CORWIN-QUASTEL
& SASAMOTO-SPOHN

Exact distribution from ASEP needed for KPZ analysis, C.T. &
WiboMm (TW)
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Fig. 1.3. Diagram of growth effects including diffusion, shadowing, and reemission
that may affect surface morphology during thin film growth. The incident particle
flux may arrive at the surface with a wide angular distribution depending on the
deposition methods and parameters.

Figure: Want the (random) height function h = h(x, t)



Modelling Growth Processes

h
% =& (h,x,t) + W(x,t)
® — captures growth effects to be modelled

W — noise term

This is a nonlinear stochastic PDE

Discrete versions are also popular models



Kardar-Parisi-Zhang—1986

Growth occurs normal to the surface
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KPZ Equation
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» Nonlinear stochastic PDE.
» Difficult to make rigorous sense due to nonlinear growth term.

» KPZ made important prediction as t — oo

h(x,t) = Voo t + 3 x
~~~ ~
deterministic linear growth % fluctuations

Famous KPZ % exponent. Y is a fluctuating quantity—no prediction
from KPZ phenomenology.
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» Finding a “pure KPZ system” has been difficult to achieve
experimentally.

» An early experiment (2003 MYLLYS, TIMONEN,. .. ) measured the
“smouldering fronts in paper sheets” and determined that fluctuations
were of order 1/3 demonstrating growth is in KPZ universality class.

Figure: Digitized slow-combustion fronts with 10 s intervals. Courtesy of
M. Myllys.



» TAKEUCHI & SANO, 2010: Convection of nematic liquid crystal
driven by an electric field. They focus on the interface between two
turbulent states. A thin square container is filled with a liquid
crystal. The liquid crystal molecules, initially aligned perpendicular to
the cell surfaces, strongly fluctuate when an AC voltage is applied
leading to first turbulent state. A laser pulse nucleates a defect in the
liquid crystal causing a second turbulent state.

» See K. A. Takeeuchi & M. Sano, Universal Fluctuations of Growing
Interfaces: Evidence in Turbulent Liquid Crystals, PRL 104, 230601
(2010), for experiments on droplet initial condition.

» To be published: K. A. Takeuchi & M. Sano: Same type of experiment
but with flat initial condition. Please contact Dr. Takeuchi for details.
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2. Z(T,X) is obtained from a weakly asymmetric simple exclusion process
(WASEP)

» For wedge initial conditions, in 2010 SASAMOTO/SPOHN and
AMIR/CORWIN/QUASTEL carried this program out which required
new theorems about the relation between stochastic heat equation and
WASEP. Both groups used the ASEP results of TW which required a
very delicate asymptotic analysis of the TW formula.
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suppressed both suppressed

» Each particle has an independent clock—when it rings with probability
p (g) it makes a jump to the right (left) if site empty; otherwise, jump
is suppressed.

» Initial conditions:

Step Initial Condition

Flat Initial Condition

Bernoulli Initial Condition
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Mapping to Growing Interface

Up segment Down segment
@ .

Initial height function corresponding to step initial condition

h(x,0) = |x]|



Discrete Z.(T, X)

BERTINI & GIACOMIN, SASAMOTO & SPOHN, AMIR, CORWIN &
QUASTEL:

1 t
Z(T,X) = 55*1/2 exp —)\gh(?x) + e Y2t

where

t=e32T, x=c"1X, v = q—p:fsl/2

1 1 1
Ve = 56—1— §52, Ao =2 4 563/2

Need ASEP formula for h(t, x) and then let ¢ — 0
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Step |I—Transition probability for N-particle system

» For N-particle ASEP: A configuration X = {x1,...,xn}, x1 < -+ xn.
» First compute for N-particle ASEP

Py(X;t) = probability of configuration X at time t

given the initial configuration is Y at t = 0.

» Write master equation (forward equation) for Py (X; t) and use ideas
from Bethe Ansatz: Incorporate the interaction between particles into
the boundary conditions of a free particle system.

» Want solution to master equation that obeys the initial condition
Py(X;0) =0x,y

Satisfying the initial condition is the hard part!



Sy denotes the permutation group on N symbols, o = (o1,...,0n) € Sy
Theorem (TW):

N
Py(X;t) = Z /C.../CAU(g) Hfj(;)yg(') ete(&) gN¢
i=1

geSy
where
e(&i) = §+Q§i—1
As(§) = I1 5(¢s:€a)
inversions (3,a) of o
+q€¢' ¢
S(e ¢y = —PTAs TS
&6 p+qsf —¢
C = sufficiently small circle about zero

i.e. all poles of A, lie outside of C

and each factor d§; carries a factor %



Step II: Compute marginal distributions

» Want Py (x,(t) < x): The probability distribution of the position of
the mth particle from the left.
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» Want Py (x,(t) < x): The probability distribution of the position of
the mth particle from the left.

» Simplest case m = 1. Leads to a complicated sum over the
permutation group:
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Step II: Compute marginal distributions

» Want Py (x,(t) < x): The probability distribution of the position of
the mth particle from the left.

» Simplest case m = 1. Leads to a complicated sum over the
permutation group:

Z SgH(U) (H f(&a(iﬁ 60(})) X

i<j

o803 S0y )
(1 =)o) Eomn) (1 = &) - - Eony) - - (1 = &)
where f(£,&') = p+ g8’ — ¢
» Surprisingly this equals

pN(N—l) Hi<j(§j - fl)
[Tt =)
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Story behind proof of identity

» First discover identity for small values of N using Mathematica.
» But how to prove the identity for all N7

) () =

WHO YOU GONNA ca

i

» Doron saw the identity when it was still a conjecture and suggested to
the authors that an identity of I. Schur (Problem VII.47 in Polya &
Szegd) had a similar look about it and might be proved in a similar
way. This led to the proof.
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» In final /arge contour expansion can take limit N — oo.

» For step initial condition and a final symmetrization of the integrand
leads to

m 1 k—1 m(m— -m 2
Plxn(t) <x) = (1) Zk.{km} M2kl (pg) /2
k>m T
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where [/']; is the 7-binomial coefficient and Cg is a large contour
about zero, i.e. no poles outside of contour.




» For m > 1 computation of P(xn,(t) < x) is more complicated: Need
small contours and large contours. This requires another identity
involving 7-binomial coefficients, 7 = p/q

» In final /arge contour expansion can take limit N — oo.

» For step initial condition and a final symmetrization of the integrand
leads to

m 1 k—1 m(m— -m 2
Plxn(t) <x) = (1) Zk.{km} M2kl (pg) /2
k>m T
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where [/']; is the 7-binomial coefficient and Cg is a large contour
about zero, i.e. no poles outside of contour.

» Unfortunately, we are unable to perform an asymptotic analysis at this
stage. Have similar formulas for other initial conditions.
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» With this determinant identity, recognize the kth term to be the kth
term in the Fredholm expansion times some coefficients. This together
with the 7-binomial theorem gives
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Step IlI: Contour Integral Representation
Fredholm Determinant Integrand

For step initial condition, above integrands have nice determinant
representation (essentially a Cauchy determinant)

With this determinant identity, recognize the kth term to be the kth
term in the Fredholm expansion times some coefficients. This together
with the 7-binomial theorem gives

det(/ — AK) dA
km;ol(l —ATk) A
éxete(g)

K &) =q

f(&.€")

and contour of integration encloses all singularities of the integrand.
However, still unable to do asymptotic analysis! The operators K have
exponentially large norms as t — oo.

The idea is to replace K with operators with the same Fredholm
determinant but better behaved norms.

Pz+ (xm(t) < x) =




Limit Theorems
Theorem (TW) Let m = [ot], v = q — p fixed, then
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Limit Theorems

Theorem (TW) Let m = [ot], v = q — p fixed, then
lim Boe (xm(t/7) < @(0)t + o) s 1¥2) = Fa(s)

uniformly for o in compact subsets of (0, 1) where c1(0) = —1 + 2,/0,
c(o) = o 1/5(1 — \/o)?/3.

Theorem (ACQ), SS) Let
Z(T,X) = p(T,X)e(TX) " p = heat kernel
then

T
Fr(s) = lim P(F(T,X) + 7 <'s) = KPZ crossover distribution

e—0

Remark: Explicit formulas for Fr(s).



Corollary(ACQ, SS)
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Summary of KPZ Universality

» Scaling exponent % does not depend upon initial configuration

» Droplet initial conditions: Long time one-point fluctuations
described by Fs.

» Flat initial conditions: Long time one-point fluctuations described by
F1. Not (yet) a rigorous proof of this for KPZ equation.

» PRAHOFER & SPOHN made these theoretical predictions concerning
fluctuations on the basis of the PNG model.



Cast of Characters

Figure: K. Takeuchi, M. Sano, G. Amir, |. Corwin, J. Quastel



Figure: T. Sasamoto, H. Spohn, H. Widom



Thank you for your attention
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