S. Nechaev 1, 2, G. Oshanin 3, A. Blumen 4
Journal of Statistical Physics 98 (2000) 281-303
We study dynamics of a Rouse polymer chain, which diffuses in a three-dimensional space under the constraint that one of its ends, referred to as the slip-link, may move only along a one-dimensional line containing randomly placed, immobile, perfect traps. For such a model we compute exactly the time evolution of the probability $P_{sl}(t)$ that the chain slip-link will not encounter any of the traps until time $t$ and consequently, that until this time the chain will remain mobile.
- 1. Laboratoire de Physique Théorique et Modèles Statistiques (LPTMS),
CNRS : UMR8626 – Université Paris XI – Paris Sud - 2. L.D. Landau Institute for Theoretical Physics,
Landau Institute for Theoretical Physics - 3. Laboratoire de Physique Théorique des Liquides (LPTL),
CNRS : UMR7600 – Université Paris VI – Pierre et Marie Curie - 4. Université de Fribourg,
Université de Fribourg