Bertrand Lacroix-A-Chez-Toine 1 Jeyson Andres Monroy GarzonChristopher Sebastian Hidalgo CalvaAnupam Kundu 2 Satya N. Majumdar 1 Jeyson Andrés Monroy GarzónIsaac Pérez Castillo 3 Satya Majumdar 1 Gregory Schehr 1
Bertrand Lacroix-A-Chez-Toine, Jeyson Andres Monroy Garzon, Christopher Sebastian Hidalgo Calva, Anupam Kundu, Satya N. Majumdar, et al.. Intermediate deviation regime for the full eigenvalue statistics in the complex Ginibre ensemble. Physical Review E , American Physical Society (APS), 2019, 100 (1), ⟨10.1103/PhysRevE.100.012137⟩. ⟨hal-02291786⟩
We study the Ginibre ensemble of $N \times N$ complex random matrices and compute exactly, for any finite $N$, the full distribution as well as all the cumulants of the number $N_r$ of eigenvalues within a disk of radius $r$ centered at the origin. In the limit of large $N$, when the average density of eigenvalues becomes uniform over the unit disk, we show that for $0
- 1. LPTMS – Laboratoire de Physique Théorique et Modèles Statistiques
- 2. International Centre for Theoretical Sciences, Tata Institute of Fundamental Research, Bangalore
- 3. Departamento de Sistemas Complejos, Instituto de Física, UNAM