M. Centelles 1, P. Leboeuf 2, A. G. Monastra 3, J. Roccia 2, P. Schuck 4, X. Vinas 1
Physical Review C 74 (2006) 034332
Semiclassical theories like the Thomas-Fermi and Wigner-Kirkwood methods give a good description of the smooth average part of the total energy of a Fermi gas in some external potential when the chemical potential is varied. However, in systems with a fixed number of particles N, these methods overbind the actual average of the quantum energy as N is varied. We describe a theory that accounts for this effect. Numerical illustrations are discussed for fermions trapped in a harmonic oscillator potential and in a hard wall cavity, and for self-consistent calculations of atomic nuclei. In the latter case, the influence of deformations on the average behavior of the energy is also considered.
- 1. Departament d’Estructura i Constituents de la Matèria, Facultat de Fisica,
Universitat de Barcelona - 2. Laboratoire de Physique Théorique et Modèles Statistiques (LPTMS),
CNRS : UMR8626 – Université Paris XI – Paris Sud - 3. TU Dresden Institut für Theoretische Physik,
Institut für Theoretische Physik - 4. Institut de Physique Nucléaire d’Orsay (IPNO),
CNRS : UMR8608 – IN2P3 – Université Paris XI – Paris Sud