Satya N. Majumdar 1 Kirone Mallick 2 Sergei Nechaev 1
Satya N. Majumdar, Kirone Mallick, Sergei Nechaev. Bethe Ansatz in the Bernoulli Matching Model of Random Sequence Alignment. Physical Review E : Statistical, Nonlinear, and Soft Matter Physics, American Physical Society, 2008, 77, pp.011110. ⟨10.1103/PhysRevE.77.011110⟩. ⟨hal-00226439⟩
For the Bernoulli Matching model of sequence alignment problem we apply the Bethe ansatz technique via an exact mapping to the 5-vertex model on a square lattice. Considering the terrace-like representation of the sequence alignment problem, we reproduce by the Bethe ansatz the results for the averaged length of the Longest Common Subsequence in Bernoulli approximation. In addition, we compute the average number of nucleation centers of the terraces.
- 1. LPTMS – Laboratoire de Physique Théorique et Modèles Statistiques
- 2. SPhT – Service de Physique Théorique