Experimental vs. Numerical Eigenvalues of a Bunimovich Stadium Billiard — A Comparison

H. Alt 1, C. Dembowski 1, H. -D. Graef 1, R. Hofferbert 1, H. Rehfeld 1, A. Richter 1, 2, C. Schmit 3

Physical Review E: Statistical, Nonlinear, and Soft Matter Physics 60 (1999) 2851-2857

We compare the statistical properties of eigenvalue sequences for a gamma=1 Bunimovich stadium billiard. The eigenvalues have been obtained by two ways: one set results from a measurement of the eigenfrequencies of a superconducting microwave resonator (real system) and the other set is calculated numerically (ideal system). The influence of the mechanical imperfections of the real system in the analysis of the spectral fluctuations and in the length spectra compared to the exact data of the ideal system are shown. We also discuss the influence of a family of marginally stable orbits, the bouncing ball orbits, in two microwave stadium billiards with different geometrical dimensions.

  • 1. Institut für Kernphysik,
    Technische Universität Darmstadt
  • 2. Wissenschaftskolleg zu Berlin,
    Berlin
  • 3. Division de Physique Théorique, IPN,
    Université Paris XI – Paris Sud
Retour en haut