Lenz Martin 1
Physical Review X, 2014, 4, pp.041002
Movement within eukaryotic cells largely originates from localized forces exerted by myosin motors on scaffolds of actin filaments. Although individual motors locally exert both contractile and extensile forces, large actomyosin structures at the cellular scale are overwhelmingly contractile, suggesting that the scaffold serves to favor contraction over extension. While this mechanism is well understood in highly organized striated muscle, its origin in disordered networks such as the cell cortex is unknown. Here we develop a mathematical model of the actin scaffold’s local two- or three-dimensional mechanics and identify four competing contraction mechanisms. We predict that one mechanism dominates, whereby local deformations of the actin break the balance between contraction and extension. In this mechanism, contractile forces result mostly from motors plucking the filaments transversely rather than buckling them longitudinally. These findings sheds light on recent $\textit{in vitro}$ experiments, and provides a new geometrical understanding of contractility in the myriad of disordered actomyosin systems found $\textit{in vivo}$.
- 1. LPTMS – Laboratoire de Physique Théorique et Modèles Statistiques