Markus Muller 1, Marc Mézard 1, Andrea Montanari 2
Journal of Chemical Physics 120 (2004) 11233
We develop a new analytic approach for the study of lattice heteropolymers, and apply it to copolymers with correlated Markovian sequences. According to our analysis, heteropolymers present three different dense phases depending upon the temperature, the nature of the monomer interactions, and the sequence correlations: (i) a liquid phase, (ii) a « soft glass » phase, and (iii) a « frozen glass » phase. The presence of the new intermediate « soft glass » phase is predicted for instance in the case of polyampholytes with sequences that favor the alternation of monomers. Our approach is based on the cavity method, a refined Bethe Peierls approximation adapted to frustrated systems. It amounts to a mean field treatment in which the nearest neighbor correlations, which are crucial in the dense phases of heteropolymers, are handled exactly. This approach is powerful and versatile, it can be improved systematically and generalized to other polymeric systems.
- 1. Laboratoire de Physique Théorique et Modèles Statistiques (LPTMS),
CNRS : UMR8626 – Université Paris XI – Paris Sud - 2. Laboratoire de Physique Théorique de l’ENS (LPTENS),
CNRS : UMR8549 – Université Paris VI – Pierre et Marie Curie – Ecole Normale Supérieure de Paris – ENS Paris