Maximum Distance Between the Leader and the Laggard for Three Brownian Walkers

Satya N. Majumdar 1, Alan J. Bray 2

Journal of Statistical Mechanics (2010) P08023

We consider three independent Brownian walkers moving on a line. The process terminates when the left-most walker (the `Leader’) meets either of the other two walkers. For arbitrary values of the diffusion constants D_1 (the Leader), D_2 and D_3 of the three walkers, we compute the probability distribution P(m|y_2,y_3) of the maximum distance m between the Leader and the current right-most particle (the `Laggard’) during the process, where y_2 and y_3 are the initial distances between the leader and the other two walkers. The result has, for large m, the form P(m|y_2,y_3) \sim A(y_2,y_3) m^{-\delta}, where \delta = (2\pi-\theta)/(\pi-\theta) and \theta = cos^{-1}(D_1/\sqrt{(D_1+D_2)(D_1+D_3)}. The amplitude A(y_2,y_3) is also determined exactly.

  • 1. Laboratoire de Physique Théorique et Modèles Statistiques (LPTMS),
    CNRS : UMR8626 – Université Paris XI – Paris Sud
  • 2. School of Physics and Astronomy,
    University of Manchester
Retour en haut