Jesper-Lykke Jacobsen 1, Marco Picco 2
Physical Review E: Statistical, Nonlinear, and Soft Matter Physics 65 (2002) 026113
The two-dimensional q-state Potts model is subjected to a Z_q symmetric disorder that allows for the existence of a Nishimori line. At q=2, this model coincides with the +/- J random-bond Ising model. For q>2, apart from the usual pure and zero-temperature fixed points, the ferro/paramagnetic phase boundary is controlled by two critical fixed points: a weak disorder point, whose universality class is that of the ferromagnetic bond-disordered Potts model, and a strong disorder point which generalizes the usual Nishimori point. We numerically study the case q=3, tracing out the phase diagram and precisely determining the critical exponents. The universality class of the Nishimori point is inconsistent with percolation on Potts clusters.
- 1. Laboratoire de Physique Théorique et Modèles Statistiques (LPTMS),
CNRS : UMR8626 – Université Paris XI – Paris Sud - 2. Laboratoire de Physique Théorique et Hautes Energies (LPTHE),
CNRS : UMR7589 – Université Paris VI – Pierre et Marie Curie – Université Paris VII – Paris Diderot