Quantum Knizhnik-Zamolodchikov equation, generalized Razumov-Stroganov sum rules and extended Joseph polynomials

P. Di Francesco 1, Paul Zinn-Justin 2

Journal of Physics A 38 (2005) L815-L822

We prove higher rank analogues of the Razumov–Stroganov sum rule for the groundstate of the O(1) loop model on a semi-infinite cylinder: we show that a weighted sum of components of the groundstate of the A_{k-1} IRF model yields integers that generalize the numbers of alternating sign matrices. This is done by constructing minimal polynomial solutions of the level 1 U_q(\\hat{sl(k)}) quantum Knizhnik–Zamolodchikov equations, which may also be interpreted as quantum incompressible q-deformations of fractional quantum Hall effect wave functions at filling fraction nu=1/k. In addition to the generalized Razumov–Stroganov point q=-e^{i pi/k+1}, another combinatorially interesting point is reached in the rational limit q -> -1, where we identify the solution with extended Joseph polynomials associated to the geometry of upper triangular matrices with vanishing k-th power.

  • 1. Service de Physique Théorique (SPhT),
    CNRS : URA2306 – CEA : DSM/SPHT
  • 2. Laboratoire de Physique Théorique et Hautes Energies (LPTHE),
    CNRS : UMR7589 – Université Paris VI – Pierre et Marie Curie – Université Paris VII – Paris Diderot
Retour en haut