J. Houdayer 1, O. C. Martin 1
Physical Review Letters 83 (1999) 1030-1033
The renormalization group has proven to be a very powerful tool in physics for treating systems with many length scales. Here we show how it can be adapted to provide a new class of algorithms for discrete optimization. The heart of our method uses renormalization and recursion, and these processes are embedded in a genetic algorithm. The system is self-consistently optimized on all scales, leading to a high probability of finding the ground state configuration. To demonstrate the generality of such an approach, we perform tests on traveling salesman and spin glass problems. The results show that our « genetic renormalization algorithm\’\’ is extremely powerful.
- 1. Laboratoire de Physique Théorique et Modèles Statistiques (LPTMS),
CNRS : UMR8626 – Université Paris XI – Paris Sud