The number of matchings in random graphs

Lenka Zdeborová 1, Marc Mézard 1

Journal of Statistical Mechanics: Theory and Experiment 1 (2006) P05003

We study matchings on sparse random graphs by means of the cavity method. We first show how the method reproduces several known results about maximum and perfect matchings in regular and Erdos-Renyi random graphs. Our main new result is the computation of the entropy, i.e. the leading order of the logarithm of the number of solutions, of matchings with a given size. We derive both an algorithm to compute this entropy for an arbitrary graph with a girth that diverges in the large size limit, and an analytic result for the entropy in regular and Erdos-Renyi random graph ensembles.

  • 1. Laboratoire de Physique Théorique et Modèles Statistiques (LPTMS),
    CNRS : UMR8626 – Université Paris XI – Paris Sud
Retour en haut