The Riemannium

Patricio Leboeuf 1, Alejandro Monastra 1, Oriol Bohigas 1

Regular and Chaotic Dynamics 6 (2001) 205-210

The properties of a fictitious, fermionic, many-body system based on the complex zeros of the Riemann zeta function are studied. The imaginary part of the zeros are interpreted as mean-field single-particle energies, and one fills them up to a Fermi energy $E_F$. The distribution of the total energy is shown to be non-Gaussian, asymmetric, and independent of $E_F$ in the limit $E_F\to\infty$. The moments of the limit distribution are computed analytically. The autocorrelation function, the finite energy corrections, and a comparison with random matrix theory are also discussed.

  • 1. Laboratoire de Physique Théorique et Modèles Statistiques (LPTMS),
    CNRS : UMR8626 – Université Paris XI – Paris Sud
Retour en haut